9,448 research outputs found

    MICK: A Meta-Learning Framework for Few-shot Relation Classification with Small Training Data

    Full text link
    Few-shot relation classification seeks to classify incoming query instances after meeting only few support instances. This ability is gained by training with large amount of in-domain annotated data. In this paper, we tackle an even harder problem by further limiting the amount of data available at training time. We propose a few-shot learning framework for relation classification, which is particularly powerful when the training data is very small. In this framework, models not only strive to classify query instances, but also seek underlying knowledge about the support instances to obtain better instance representations. The framework also includes a method for aggregating cross-domain knowledge into models by open-source task enrichment. Additionally, we construct a brand new dataset: the TinyRel-CM dataset, a few-shot relation classification dataset in health domain with purposely small training data and challenging relation classes. Experimental results demonstrate that our framework brings performance gains for most underlying classification models, outperforms the state-of-the-art results given small training data, and achieves competitive results with sufficiently large training data

    One-Shot Relational Learning for Knowledge Graphs

    Full text link
    Knowledge graphs (KGs) are the key components of various natural language processing applications. To further expand KGs' coverage, previous studies on knowledge graph completion usually require a large number of training instances for each relation. However, we observe that long-tail relations are actually more common in KGs and those newly added relations often do not have many known triples for training. In this work, we aim at predicting new facts under a challenging setting where only one training instance is available. We propose a one-shot relational learning framework, which utilizes the knowledge extracted by embedding models and learns a matching metric by considering both the learned embeddings and one-hop graph structures. Empirically, our model yields considerable performance improvements over existing embedding models, and also eliminates the need of re-training the embedding models when dealing with newly added relations.Comment: EMNLP 201
    • …
    corecore