15 research outputs found

    Multi-layered Semantic Representation Network for Multi-label Image Classification

    Full text link
    Multi-label image classification (MLIC) is a fundamental and practical task, which aims to assign multiple possible labels to an image. In recent years, many deep convolutional neural network (CNN) based approaches have been proposed which model label correlations to discover semantics of labels and learn semantic representations of images. This paper advances this research direction by improving both the modeling of label correlations and the learning of semantic representations. On the one hand, besides the local semantics of each label, we propose to further explore global semantics shared by multiple labels. On the other hand, existing approaches mainly learn the semantic representations at the last convolutional layer of a CNN. But it has been noted that the image representations of different layers of CNN capture different levels or scales of features and have different discriminative abilities. We thus propose to learn semantic representations at multiple convolutional layers. To this end, this paper designs a Multi-layered Semantic Representation Network (MSRN) which discovers both local and global semantics of labels through modeling label correlations and utilizes the label semantics to guide the semantic representations learning at multiple layers through an attention mechanism. Extensive experiments on four benchmark datasets including VOC 2007, COCO, NUS-WIDE, and Apparel show a competitive performance of the proposed MSRN against state-of-the-art models

    Discriminator-free Unsupervised Domain Adaptation for Multi-label Image Classification

    Get PDF
    In this paper, a discriminator-free adversarial-based Unsupervised Domain Adaptation (UDA) for Multi-Label Image Classification (MLIC) referred to as DDA-MLIC is proposed. Over the last two years, some attempts have been made for introducing adversarial-based UDA methods in the context of MLIC. However, these methods which rely on an additional discriminator subnet present two shortcomings. First, the learning of domain-invariant features may harm their task-specific discriminative power, since the classification and discrimination tasks are decoupled. Moreover, the use of an additional discriminator usually induces an increase of the network size. Herein, we propose to overcome these issues by introducing a novel adversarial critic that is directly deduced from the task-specific classifier. Specifically, a two-component Gaussian Mixture Model (GMM) is fitted on the source and target predictions, allowing the distinction of two clusters. This allows extracting a Gaussian distribution for each component. The resulting Gaussian distributions are then used for formulating an adversarial loss based on a Frechet distance. The proposed method is evaluated on three multi-label image datasets. The obtained results demonstrate that DDA-MLIC outperforms existing state-of-the-art methods while requiring a lower number of parameters

    Graph Attention Transformer Network for Multi-Label Image Classification

    Full text link
    Multi-label classification aims to recognize multiple objects or attributes from images. However, it is challenging to learn from proper label graphs to effectively characterize such inter-label correlations or dependencies. Current methods often use the co-occurrence probability of labels based on the training set as the adjacency matrix to model this correlation, which is greatly limited by the dataset and affects the model's generalization ability. In this paper, we propose a Graph Attention Transformer Network (GATN), a general framework for multi-label image classification that can effectively mine complex inter-label relationships. First, we use the cosine similarity based on the label word embedding as the initial correlation matrix, which can represent rich semantic information. Subsequently, we design the graph attention transformer layer to transfer this adjacency matrix to adapt to the current domain. Our extensive experiments have demonstrated that our proposed methods can achieve state-of-the-art performance on three datasets

    Estimator: An Effective and Scalable Framework for Transportation Mode Classification over Trajectories

    Full text link
    Transportation mode classification, the process of predicting the class labels of moving objects transportation modes, has been widely applied to a variety of real world applications, such as traffic management, urban computing, and behavior study. However, existing studies of transportation mode classification typically extract the explicit features of trajectory data but fail to capture the implicit features that affect the classification performance. In addition, most of the existing studies also prefer to apply RNN-based models to embed trajectories, which is only suitable for classifying small-scale data. To tackle the above challenges, we propose an effective and scalable framework for transportation mode classification over GPS trajectories, abbreviated Estimator. Estimator is established on a developed CNN-TCN architecture, which is capable of leveraging the spatial and temporal hidden features of trajectories to achieve high effectiveness and efficiency. Estimator partitions the entire traffic space into disjointed spatial regions according to traffic conditions, which enhances the scalability significantly and thus enables parallel transportation classification. Extensive experiments using eight public real-life datasets offer evidence that Estimator i) achieves superior model effectiveness (i.e., 99% Accuracy and 0.98 F1-score), which outperforms state-of-the-arts substantially; ii) exhibits prominent model efficiency, and obtains 7-40x speedups up over state-of-the-arts learning-based methods; and iii) shows high model scalability and robustness that enables large-scale classification analytics.Comment: 12 pages, 8 figure
    corecore