5,049 research outputs found

    Targeted aspect based multimodal sentiment analysis:an attention capsule extraction and multi-head fusion network

    Get PDF
    Multimodal sentiment analysis has currently identified its significance in a variety of domains. For the purpose of sentiment analysis, different aspects of distinguishing modalities, which correspond to one target, are processed and analyzed. In this work, we propose the targeted aspect-based multimodal sentiment analysis (TABMSA) for the first time. Furthermore, an attention capsule extraction and multi-head fusion network (EF-Net) on the task of TABMSA is devised. The multi-head attention (MHA) based network and the ResNet-152 are employed to deal with texts and images, respectively. The integration of MHA and capsule network aims to capture the interaction among the multimodal inputs. In addition to the targeted aspect, the information from the context and the image is also incorporated for sentiment delivered. We evaluate the proposed model on two manually annotated datasets. the experimental results demonstrate the effectiveness of our proposed model for this new task

    Multimodal Sentiment Analysis Based on Deep Learning: Recent Progress

    Get PDF
    Multimodal sentiment analysis is an important research topic in the field of NLP, aiming to analyze speakers\u27 sentiment tendencies through features extracted from textual, visual, and acoustic modalities. Its main methods are based on machine learning and deep learning. Machine learning-based methods rely heavily on labeled data. But deep learning-based methods can overcome this shortcoming and capture the in-depth semantic information and modal characteristics of the data, as well as the interactive information between multimodal data. In this paper, we survey the deep learning-based methods, including fusion of text and image and fusion of text, image, audio, and video. Specifically, we discuss the main problems of these methods and the future directions. Finally, we review the work of multimodal sentiment analysis in conversation

    UR-FUNNY: A Multimodal Language Dataset for Understanding Humor

    Full text link
    Humor is a unique and creative communicative behavior displayed during social interactions. It is produced in a multimodal manner, through the usage of words (text), gestures (vision) and prosodic cues (acoustic). Understanding humor from these three modalities falls within boundaries of multimodal language; a recent research trend in natural language processing that models natural language as it happens in face-to-face communication. Although humor detection is an established research area in NLP, in a multimodal context it is an understudied area. This paper presents a diverse multimodal dataset, called UR-FUNNY, to open the door to understanding multimodal language used in expressing humor. The dataset and accompanying studies, present a framework in multimodal humor detection for the natural language processing community. UR-FUNNY is publicly available for research

    Entity-sensitive attention and fusion network for entity-level multimodal sentiment classification

    Get PDF
    National Research Foundation (NRF) Singapor

    Syntax-aware Hybrid prompt model for Few-shot multi-modal sentiment analysis

    Full text link
    Multimodal Sentiment Analysis (MSA) has been a popular topic in natural language processing nowadays, at both sentence and aspect level. However, the existing approaches almost require large-size labeled datasets, which bring about large consumption of time and resources. Therefore, it is practical to explore the method for few-shot sentiment analysis in cross-modalities. Previous works generally execute on textual modality, using the prompt-based methods, mainly two types: hand-crafted prompts and learnable prompts. The existing approach in few-shot multi-modality sentiment analysis task has utilized both methods, separately. We further design a hybrid pattern that can combine one or more fixed hand-crafted prompts and learnable prompts and utilize the attention mechanisms to optimize the prompt encoder. The experiments on both sentence-level and aspect-level datasets prove that we get a significant outperformance
    • …
    corecore