630,522 research outputs found
Architecture for Mobile Heterogeneous Multi Domain Networks
Multi domain networks can be used in several scenarios including military, enterprize networks, emergency networks and many other cases. In such networks, each domain might be under its own administration. Therefore, the cooperation among domains is conditioned by individual domain policies regarding sharing information, such as network topology, connectivity, mobility, security, various service availability and so on. We propose a new architecture for Heterogeneous Multi Domain (HMD) networks, in which one the operations are subject to specific domain policies. We propose a hierarchical architecture, with an infrastructure of gateways at highest-control level that enables policy based interconnection, mobility and other services among domains. Gateways are responsible for translation among different communication protocols, including routing, signalling, and security. Besides the architecture, we discuss in more details the mobility and adaptive capacity of services in HMD. We discuss the HMD scalability and other advantages compared to existing architectural and mobility solutions. Furthermore, we analyze the dynamic availability at the control level of the hierarchy
The Coron System
Coron is a domain and platform independent, multi-purposed data mining
toolkit, which incorporates not only a rich collection of data mining
algorithms, but also allows a number of auxiliary operations. To the best of
our knowledge, a data mining toolkit designed specifically for itemset
extraction and association rule generation like Coron does not exist elsewhere.
Coron also provides support for preparing and filtering data, and for
interpreting the extracted units of knowledge
Logics of Temporal-Epistemic Actions
We present Dynamic Epistemic Temporal Logic, a framework for reasoning about
operations on multi-agent Kripke models that contain a designated temporal
relation. These operations are natural extensions of the well-known "action
models" from Dynamic Epistemic Logic. Our "temporal action models" may be used
to define a number of informational actions that can modify the "objective"
temporal structure of a model along with the agents' basic and higher-order
knowledge and beliefs about this structure, including their beliefs about the
time. In essence, this approach provides one way to extend the domain of action
model-style operations from atemporal Kripke models to temporal Kripke models
in a manner that allows actions to control the flow of time. We present a
number of examples to illustrate the subtleties involved in interpreting the
effects of our extended action models on temporal Kripke models. We also study
preservation of important epistemic-temporal properties of temporal Kripke
models under temporal action model-induced operations, provide complete
axiomatizations for two theories of temporal action models, and connect our
approach with previous work on time in Dynamic Epistemic Logic
A Cloud-ready Architecture for Shared Medical Imaging Repository
Background and Objective: Nowadays usage paradigms of medical imaging
resources are requesting vendor-neutral archives, accessible through standard
interfaces, with multi-repository support. Regional repositories shared by
distinct institutions, teleradiology as a service at Cloud, teaching and
research archives, are illustrative examples of this new reality. However,
traditional production environments have a server archive instance per
functional domain where every registered client application has access to all
studies. This paper proposes an innovator ownership concept and access control
mechanisms that provide a multi-repository environment and integrates well with
standard protocols.
Methods: A secure accounting mechanism for medical imaging repositories were
designed and instantiated as an extension of a well-known open-source archive.
A new Web services layer was implemented to provide a vendor-neutral solution
complaint with modern DICOM-Web protocols for storage, search and retrieve of
medical imaging data.
Results: The concept validation was done through the integration of proposed
architecture in an open-source solution. A quantitative assessment was
performed for evaluating the impact of the mechanism in the usual DICOM Web
operations.
Conclusions: This article proposes a secure accounting architecture able to
easily convert a standard medical imaging archive server in a multi-repository
solution. The proposal validation was done through a set of tests that
demonstrated its robustness and usage feasibility in a production environment.
The proposed system offers new services, fundamental in a new era of
Cloud-based operations, with acceptable temporal costs.Comment: 9 pages, 7 figures and 2 tables. Journal submissio
Ant-colony-based multiuser detection for multifunctional-antenna-array-assisted MC DS-CDMA systems
A novel Ant Colony Optimization (ACO) based Multi-User Detector (MUD) is designed for the synchronous Multi-Functional Antenna Array (MFAA) assisted Multi-Carrier Direct-Sequence Code-Division Multiple-Access (MC DS-CDMA) uplink (UL), which supports both receiver diversity and receiver beamforming. The ACO-based MUD aims for achieving a bit-error-rate (BER) performance approaching that of the optimum maximum likelihood (ML) MUD, without carrying out an exhaustive search of the entire MC DS-CDMA search space constituted by all possible combinations of the received multi-user vectors. We will demonstrate that regardless of the number of the subcarriers or of the MFAA configuration, the system employing the proposed ACO based MUD is capable of supporting 32 users with the aid of 31-chip Gold codes used as the T-domain spreading sequence without any significant performance degradation compared to the single-user system. As a further benefit, the number of floating point operations per second (FLOPS) imposed by the proposed ACO-based MUD is a factor of 108 lower than that of the ML MUD. We will also show that at a given increase of the complexity, the MFAA will allow the ACO based MUD to achieve a higher SNR gain than the Single-Input Single-Output (SISO) MC DS-CDMA system. Index Terms—Ant Colony Optimization, Multi-User Detector, Multi-Functional Antenna Array, Multi-Carrier Direct-Sequence Code-Division Multiple-Access, Uplink, Near-Maximum Likelihood Detection
Localization and recognition of the scoreboard in sports video based on SIFT point matching
In broadcast sports video, the scoreboard is attached at a fixed location in the video and generally the scoreboard always exists in all video frames in order to help viewers to understand the match’s progression quickly. Based on these observations, we present a new localization and recognition method for scoreboard text in sport videos in this paper. The method first matches the Scale Invariant Feature Transform (SIFT) points using a modified matching technique between two frames extracted from a video clip and then localizes the scoreboard by computing a robust estimate of the matched point cloud in a two-stage non-scoreboard filter process based on some domain rules. Next some enhancement operations are performed on the localized scoreboard, and a Multi-frame Voting Decision is used. Both aim to increasing the OCR rate. Experimental results demonstrate the effectiveness and efficiency of our proposed method
Learning SO(3) Equivariant Representations with Spherical CNNs
We address the problem of 3D rotation equivariance in convolutional neural
networks. 3D rotations have been a challenging nuisance in 3D classification
tasks requiring higher capacity and extended data augmentation in order to
tackle it. We model 3D data with multi-valued spherical functions and we
propose a novel spherical convolutional network that implements exact
convolutions on the sphere by realizing them in the spherical harmonic domain.
Resulting filters have local symmetry and are localized by enforcing smooth
spectra. We apply a novel pooling on the spectral domain and our operations are
independent of the underlying spherical resolution throughout the network. We
show that networks with much lower capacity and without requiring data
augmentation can exhibit performance comparable to the state of the art in
standard retrieval and classification benchmarks.Comment: Camera-ready. Accepted to ECCV'18 as oral presentatio
Simplified Multiuser Detection for SCMA with Sum-Product Algorithm
Sparse code multiple access (SCMA) is a novel non-orthogonal multiple access
technique, which fully exploits the shaping gain of multi-dimensional
codewords. However, the lack of simplified multiuser detection algorithm
prevents further implementation due to the inherently high computation
complexity. In this paper, general SCMA detector algorithms based on
Sum-product algorithm are elaborated. Then two improved algorithms are
proposed, which simplify the detection structure and curtail exponent
operations quantitatively in logarithm domain. Furthermore, to analyze these
detection algorithms fairly, we derive theoretical expression of the average
mutual information (AMI) of SCMA (SCMA-AMI), and employ a statistical method to
calculate SCMA-AMI based specific detection algorithm. Simulation results show
that the performance is almost as well as the based message passing algorithm
in terms of both BER and AMI while the complexity is significantly decreased,
compared to the traditional Max-Log approximation method
- …
