466 research outputs found

    XingGAN for Person Image Generation

    Full text link
    We propose a novel Generative Adversarial Network (XingGAN or CrossingGAN) for person image generation tasks, i.e., translating the pose of a given person to a desired one. The proposed Xing generator consists of two generation branches that model the person's appearance and shape information, respectively. Moreover, we propose two novel blocks to effectively transfer and update the person's shape and appearance embeddings in a crossing way to mutually improve each other, which has not been considered by any other existing GAN-based image generation work. Extensive experiments on two challenging datasets, i.e., Market-1501 and DeepFashion, demonstrate that the proposed XingGAN advances the state-of-the-art performance both in terms of objective quantitative scores and subjective visual realness. The source code and trained models are available at https://github.com/Ha0Tang/XingGAN.Comment: Accepted to ECCV 2020, camera ready (16 pages) + supplementary (6 pages

    Dual Attention GANs for Semantic Image Synthesis

    Full text link
    In this paper, we focus on the semantic image synthesis task that aims at transferring semantic label maps to photo-realistic images. Existing methods lack effective semantic constraints to preserve the semantic information and ignore the structural correlations in both spatial and channel dimensions, leading to unsatisfactory blurry and artifact-prone results. To address these limitations, we propose a novel Dual Attention GAN (DAGAN) to synthesize photo-realistic and semantically-consistent images with fine details from the input layouts without imposing extra training overhead or modifying the network architectures of existing methods. We also propose two novel modules, i.e., position-wise Spatial Attention Module (SAM) and scale-wise Channel Attention Module (CAM), to capture semantic structure attention in spatial and channel dimensions, respectively. Specifically, SAM selectively correlates the pixels at each position by a spatial attention map, leading to pixels with the same semantic label being related to each other regardless of their spatial distances. Meanwhile, CAM selectively emphasizes the scale-wise features at each channel by a channel attention map, which integrates associated features among all channel maps regardless of their scales. We finally sum the outputs of SAM and CAM to further improve feature representation. Extensive experiments on four challenging datasets show that DAGAN achieves remarkably better results than state-of-the-art methods, while using fewer model parameters. The source code and trained models are available at https://github.com/Ha0Tang/DAGAN.Comment: Accepted to ACM MM 2020, camera ready (9 pages) + supplementary (10 pages

    Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation

    Full text link
    We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling \& channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks, such as semantic image synthesis. The code is available at https://github.com/Ha0Tang/SelectionGAN.Comment: An extended version of a paper published in CVPR2019. arXiv admin note: substantial text overlap with arXiv:1904.0680

    Edge Guided GANs with Multi-Scale Contrastive Learning for Semantic Image Synthesis

    Full text link
    We propose a novel ECGAN for the challenging semantic image synthesis task. Although considerable improvements have been achieved by the community in the recent period, the quality of synthesized images is far from satisfactory due to three largely unresolved challenges. 1) The semantic labels do not provide detailed structural information, making it challenging to synthesize local details and structures; 2) The widely adopted CNN operations such as convolution, down-sampling, and normalization usually cause spatial resolution loss and thus cannot fully preserve the original semantic information, leading to semantically inconsistent results (e.g., missing small objects); 3) Existing semantic image synthesis methods focus on modeling 'local' semantic information from a single input semantic layout. However, they ignore 'global' semantic information of multiple input semantic layouts, i.e., semantic cross-relations between pixels across different input layouts. To tackle 1), we propose to use the edge as an intermediate representation which is further adopted to guide image generation via a proposed attention guided edge transfer module. To tackle 2), we design an effective module to selectively highlight class-dependent feature maps according to the original semantic layout to preserve the semantic information. To tackle 3), inspired by current methods in contrastive learning, we propose a novel contrastive learning method, which aims to enforce pixel embeddings belonging to the same semantic class to generate more similar image content than those from different classes. We further propose a novel multi-scale contrastive learning method that aims to push same-class features from different scales closer together being able to capture more semantic relations by explicitly exploring the structures of labeled pixels from multiple input semantic layouts from different scales.Comment: Accepted to TPAMI, an extended version of a paper published in ICLR2023. arXiv admin note: substantial text overlap with arXiv:2003.1389

    Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

    Full text link
    In this paper, we address the task of semantic-guided scene generation. One open challenge in scene generation is the difficulty of the generation of small objects and detailed local texture, which has been widely observed in global image-level generation methods. To tackle this issue, in this work we consider learning the scene generation in a local context, and correspondingly design a local class-specific generative network with semantic maps as a guidance, which separately constructs and learns sub-generators concentrating on the generation of different classes, and is able to provide more scene details. To learn more discriminative class-specific feature representations for the local generation, a novel classification module is also proposed. To combine the advantage of both the global image-level and the local class-specific generation, a joint generation network is designed with an attention fusion module and a dual-discriminator structure embedded. Extensive experiments on two scene image generation tasks show superior generation performance of the proposed model. The state-of-the-art results are established by large margins on both tasks and on challenging public benchmarks. The source code and trained models are available at https://github.com/Ha0Tang/LGGAN.Comment: Accepted to CVPR 2020, camera ready (10 pages) + supplementary (18 pages
    • …
    corecore