629 research outputs found

    Millimeter-Wave Communication with Non-Orthogonal Multiple Access for 5G

    Full text link
    To further improve the system capacity for 5G, we explore the integration of non-orthogonal multiple access (NOMA) in mmWave communications (mmWave-NOMA) for future 5G systems. Compared with the conventional NOMA, the distinguishing feature of mmWave-NOMA is that, it is usually characterized by transmit/receive beamforming with large antenna arrays. In this paper, we focus on the design challenges of mmWave-NOMA due to beamforming. Firstly, we study how beamforming affects the sum-rate performance of mmWave-NOMA, and find that with conventional single-beam forming, the performance may be offset by the relative angle between NOMA users. Then, we consider multi-beam forming for mmWave-NOMA, which is shown to be able to achieve promising performance enhancement as well as robustness. We further investigate the challenging joint design of the intertwined power allocation and user pairing for mmWave-NOMA. We also discuss the challenges and propose some potential solutions in detail. Finally, we consider hybrid spatial division multiple access (SDMA) and NOMA in mmWave communications, where some possible system configurations and the corresponding solutions are discussed to address the multi-user issues including multi-user precoding and multi-user interference (MUI) mitigation.Comment: This paper explores mmWave communications with NOMA for 5G, and focuses on the beamforming issues with phased array

    Multi-Beam NOMA for Hybrid mmWave Systems

    Full text link
    In this paper, we propose a multi-beam non-orthogonal multiple access (NOMA) scheme for hybrid millimeter wave (mmWave) systems and study its resource allocation. A beam splitting technique is designed to generate multiple analog beams to serve multiple users for NOMA transmission. Compared to conventional mmWave orthogonal multiple access (mmWave-OMA) schemes, the proposed scheme can serve more than one user on each radio frequency (RF) chain. Besides, in contrast to the recently proposed single-beam mmWave-NOMA scheme which can only serve multiple NOMA users within the same beam, the proposed scheme can perform NOMA transmission for the users with an arbitrary angle-of-departure (AOD) distribution. This provides a higher flexibility for applying NOMA in mmWave communications and thus can efficiently exploit the potential multi-user diversity. Then, we design a suboptimal two-stage resource allocation for maximizing the system sum-rate. In the first stage, assuming that only analog beamforming is available, a user grouping and antenna allocation algorithm is proposed to maximize the conditional system sum-rate based on the coalition formation game theory. In the second stage, with the zero-forcing (ZF) digital precoder, a suboptimal solution is devised to solve a non-convex power allocation optimization problem for the maximization of the system sum-rate which takes into account the quality of service (QoS) constraint. Simulation results show that our designed resource allocation can achieve a close-to-optimal performance in each stage. In addition, we demonstrate that the proposed multi-beam mmWave-NOMA scheme offers a higher spectral efficiency than that of the single-beam mmWave-NOMA and the mmWave-OMA schemes.Comment: Submitted for possible journal publicatio

    A Multi-Beam NOMA Framework for Hybrid mmWave Systems

    Full text link
    In this paper, we propose a multi-beam non-orthogonal multiple access (NOMA) framework for hybrid millimeter wave (mmWave) systems. The proposed framework enables the use of a limited number of radio frequency (RF) chains in hybrid mmWave systems to accommodate multiple users with various angles of departures (AODs). A beam splitting technique is introduced to generate multiple analog beams to facilitate NOMA transmission. We analyze the performance of a system when there are sufficient numbers of antennas driven by a single RF chain at each transceiver. Furthermore, we derive the sufficient and necessary conditions of antenna allocation, which guarantees that the proposed multi-beam NOMA scheme outperforms the conventional time division multiple access (TDMA) scheme in terms of system sum-rate. The numerical results confirm the accuracy of the developed analysis and unveil the performance gain achieved by the proposed multi-beam NOMA scheme over the single-beam NOMA scheme.Comment: 7 pages, 5 figures, accepted for ICC 201

    Hybrid Precoding-Based Millimeter-Wave Massive MIMO-NOMA with Simultaneous Wireless Information and Power Transfer

    Full text link
    Non-orthogonal multiple access (NOMA) has been recently considered in millimeter-wave (mmWave) massive MIMO systems to further enhance the spectrum efficiency. In addition, simultaneous wireless information and power transfer (SWIPT) is a promising solution to maximize the energy efficiency. In this paper, for the first time, we investigate the integration of SWIPT in mmWave massive MIMO-NOMA systems. As mmWave massive MIMO will likely use hybrid precoding (HP) to significantly reduce the number of required radio-frequency (RF) chains without an obvious performance loss, where the fully digital precoder is decomposed into a high-dimensional analog precoder and a low-dimensional digital precoder, we propose to apply SWIPT in HP-based MIMO-NOMA systems, where each user can extract both information and energy from the received RF signals by using a power splitting receiver. Specifically, the cluster-head selection (CHS) algorithm is proposed to select one user for each beam at first, and then the analog precoding is designed according to the selected cluster heads for all beams. After that, user grouping is performed based on the correlation of users' equivalent channels. Then, the digital precoding is designed by selecting users with the strongest equivalent channel gain in each beam. Finally, the achievable sum rate is maximized by jointly optimizing power allocation for mmWave massive MIMO-NOMA and power splitting factors for SWIPT, and an iterative optimization algorithm is developed to solve the non-convex problem. Simulation results show that the proposed HP-based MIMO-NOMA with SWIPT can achieve higher spectrum and energy efficiency compared with HP-based MIMO-OMA with SWIPT.Comment: To appear in IEEE Journal on Selected Areas in Communications. Simulation codes are provided to reproduce the results presented in this paper: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.htm

    Optimal User Scheduling and Power Allocation for Millimeter Wave NOMA Systems

    Full text link
    This paper investigates the application of non-orthogonal multiple access (NOMA) in millimeter wave (mmWave) communications by exploiting beamforming, user scheduling and power allocation. Random beamforming is invoked for reducing the feedback overhead of considered systems. A nonconvex optimization problem for maximizing the sum rate is formulated, which is proved to be NP-hard. The branch and bound (BB) approach is invoked to obtain the optimal power allocation policy, which is proved to converge to a global optimal solution. To elaborate further, low complexity suboptimal approach is developed for striking a good computational complexity-optimality tradeoff, where matching theory and successive convex approximation (SCA) techniques are invoked for tackling the user scheduling and power allocation problems, respectively. Simulation results reveal that: i) the proposed low complexity solution achieves a near-optimal performance; and ii) the proposed mmWave NOMA systems is capable of outperforming conventional mmWave orthogonal multiple access (OMA) systems in terms of sum rate and the number of served users.Comment: Submitted for possible publicatio

    A Two-Stage Beam Alignment Framework for Hybrid MmWave Distributed Antenna Systems

    Full text link
    In this paper, we investigate the beam alignment problem in millimeter-wave (mmWave) distributed antenna systems where a home base station communicates with multiple users through a number of distributed remote radio units (RRUs). Specifically, a two-stage schedule-and-align (TSSA) scheme is proposed to facilitate efficient communications. In the first stage, a coarse beam scanning over the entire angular space is performed while beam indices and the corresponding peak-to-background ratios of the received power-angle-spectrum are obtained from users' feedback. Then, by exploiting the user feedback, an efficient user scheduling algorithm is developed to improve the system spectral efficiency and to reduce the system misalignment probability. Next, the second stage of beam search is performed by each RRU with reconfigured search angles, search steps, and power levels to obtain a refined beam alignment. Simulation results show that the proposed TSSA scheme can significantly outperform the conventional one-stage method in both centralized and distributed mmWave systems in terms of beam alignment accuracy and spectral efficiency.Comment: 5 pages, 5 figures, accepted by IEEE SPAWC 201

    A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends

    Full text link
    Non-orthogonal multiple access (NOMA) is an essential enabling technology for the fifth generation (5G) wireless networks to meet the heterogeneous demands on low latency, high reliability, massive connectivity, improved fairness, and high throughput. The key idea behind NOMA is to serve multiple users in the same resource block, such as a time slot, subcarrier, or spreading code. The NOMA principle is a general framework, and several recently proposed 5G multiple access schemes can be viewed as special cases. This survey provides an overview of the latest NOMA research and innovations as well as their applications. Thereby, the papers published in this special issue are put into the content of the existing literature. Future research challenges regarding NOMA in 5G and beyond are also discussed.Comment: to appear in IEEE JSAC, 201

    Joint Tx-Rx Beamforming and Power Allocation for 5G Millimeter-Wave Non-Orthogonal Multiple Access (MmWave-NOMA) Networks

    Full text link
    In this paper, we investigate the combination of non-orthogonal multiple access and millimeter-Wave communications (mmWave-NOMA). A downlink cellular system is considered, where an analog phased array is equipped at both the base station and users. A joint Tx-Rx beamforming and power allocation problem is formulated to maximize the achievable sum rate (ASR) subject to a minimum rate constraint for each user. As the problem is non-convex, we propose a sub-optimal solution with three stages. In the first stage, the optimal power allocation with a closed form is obtained for an arbitrary fixed Tx-Rx beamforming. In the second stage, the optimal Rx beamforming with a closed form is designed for an arbitrary fixed Tx beamforming. In the third stage, the original problem is reduced to a Tx beamforming problem by using the previous results, and a boundary-compressed particle swarm optimization (BC-PSO) algorithm is proposed to obtain a sub-optimal solution. Extensive performance evaluations are conducted to verify the rational of the proposed solution, and the results show that the proposed sub-optimal solution can achieve a near-upper-bound performance in terms of ASR, which is significantly improved compared with those of the state-of-the-art schemes and the conventional mmWave orthogonal multiple access (mmWave-OMA) system.Comment: 11Pages, 10 figure

    Signal Processing for MIMO-NOMA: Present and Future Challenges

    Full text link
    Non-orthogonal multiple access (NOMA), as the newest member of the multiple access family, is envisioned to be an essential component of 5G mobile networks. The combination of NOMA and multi-antenna multi-input multi-output (MIMO) technologies exhibits a significant potential in improving spectral efficiency and providing better wireless services to more users. In this article, we introduce the basic concepts of MIMO-NOMA and summarize the key technical problems in MIMO-NOMA systems. Then, we explore the problem formulation, beamforming, user clustering, and power allocation of single/multi-cluster MIMO-NOMA in the literature along with their limitations. Furthermore, we point out an important issue of the stability of successive interference cancellation (SIC) that arises using achievable rates as performance metrics in practical NOMA/MIMO-NOMA systems. Finally, we discuss incorporating NOMA with massive/millimeter wave MIMO, and identify the main challenges and possible future research directions in this area.Comment: 14 pages (single column), 4 figures. This work has been accepted by the IEEE Wireless Communications, the special issue of non-orthogonal multiple access for 5

    Deep Learning for Physical-Layer 5G Wireless Techniques: Opportunities, Challenges and Solutions

    Full text link
    The new demands for high-reliability and ultra-high capacity wireless communication have led to extensive research into 5G communications. However, the current communication systems, which were designed on the basis of conventional communication theories, signficantly restrict further performance improvements and lead to severe limitations. Recently, the emerging deep learning techniques have been recognized as a promising tool for handling the complicated communication systems, and their potential for optimizing wireless communications has been demonstrated. In this article, we first review the development of deep learning solutions for 5G communication, and then propose efficient schemes for deep learning-based 5G scenarios. Specifically, the key ideas for several important deep learningbased communication methods are presented along with the research opportunities and challenges. In particular, novel communication frameworks of non-orthogonal multiple access (NOMA), massive multiple-input multiple-output (MIMO), and millimeter wave (mmWave) are investigated, and their superior performances are demonstrated. We vision that the appealing deep learning-based wireless physical layer frameworks will bring a new direction in communication theories and that this work will move us forward along this road.Comment: Submitted a possible publication to IEEE Wireless Communications Magazin
    corecore