19,866 research outputs found

    Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis

    Full text link
    Related tasks often have inter-dependence on each other and perform better when solved in a joint framework. In this paper, we present a deep multi-task learning framework that jointly performs sentiment and emotion analysis both. The multi-modal inputs (i.e., text, acoustic and visual frames) of a video convey diverse and distinctive information, and usually do not have equal contribution in the decision making. We propose a context-level inter-modal attention framework for simultaneously predicting the sentiment and expressed emotions of an utterance. We evaluate our proposed approach on CMU-MOSEI dataset for multi-modal sentiment and emotion analysis. Evaluation results suggest that multi-task learning framework offers improvement over the single-task framework. The proposed approach reports new state-of-the-art performance for both sentiment analysis and emotion analysis.Comment: Accepted for publication in NAACL:HLT-201

    Investigation of Multimodal Features, Classifiers and Fusion Methods for Emotion Recognition

    Full text link
    Automatic emotion recognition is a challenging task. In this paper, we present our effort for the audio-video based sub-challenge of the Emotion Recognition in the Wild (EmotiW) 2018 challenge, which requires participants to assign a single emotion label to the video clip from the six universal emotions (Anger, Disgust, Fear, Happiness, Sad and Surprise) and Neutral. The proposed multimodal emotion recognition system takes audio, video and text information into account. Except for handcraft features, we also extract bottleneck features from deep neutral networks (DNNs) via transfer learning. Both temporal classifiers and non-temporal classifiers are evaluated to obtain the best unimodal emotion classification result. Then possibilities are extracted and passed into the Beam Search Fusion (BS-Fusion). We test our method in the EmotiW 2018 challenge and we gain promising results. Compared with the baseline system, there is a significant improvement. We achieve 60.34% accuracy on the testing dataset, which is only 1.5% lower than the winner. It shows that our method is very competitive.Comment: 9 pages, 11 figures and 4 Tables. EmotiW2018 challeng

    Audio Visual Emotion Recognition with Temporal Alignment and Perception Attention

    Full text link
    This paper focuses on two key problems for audio-visual emotion recognition in the video. One is the audio and visual streams temporal alignment for feature level fusion. The other one is locating and re-weighting the perception attentions in the whole audio-visual stream for better recognition. The Long Short Term Memory Recurrent Neural Network (LSTM-RNN) is employed as the main classification architecture. Firstly, soft attention mechanism aligns the audio and visual streams. Secondly, seven emotion embedding vectors, which are corresponding to each classification emotion type, are added to locate the perception attentions. The locating and re-weighting process is also based on the soft attention mechanism. The experiment results on EmotiW2015 dataset and the qualitative analysis show the efficiency of the proposed two techniques

    Multimodal Emotion Recognition for One-Minute-Gradual Emotion Challenge

    Full text link
    The continuous dimensional emotion modelled by arousal and valence can depict complex changes of emotions. In this paper, we present our works on arousal and valence predictions for One-Minute-Gradual (OMG) Emotion Challenge. Multimodal representations are first extracted from videos using a variety of acoustic, video and textual models and support vector machine (SVM) is then used for fusion of multimodal signals to make final predictions. Our solution achieves Concordant Correlation Coefficient (CCC) scores of 0.397 and 0.520 on arousal and valence respectively for the validation dataset, which outperforms the baseline systems with the best CCC scores of 0.15 and 0.23 on arousal and valence by a large margin

    Multimodal Local-Global Ranking Fusion for Emotion Recognition

    Full text link
    Emotion recognition is a core research area at the intersection of artificial intelligence and human communication analysis. It is a significant technical challenge since humans display their emotions through complex idiosyncratic combinations of the language, visual and acoustic modalities. In contrast to traditional multimodal fusion techniques, we approach emotion recognition from both direct person-independent and relative person-dependent perspectives. The direct person-independent perspective follows the conventional emotion recognition approach which directly infers absolute emotion labels from observed multimodal features. The relative person-dependent perspective approaches emotion recognition in a relative manner by comparing partial video segments to determine if there was an increase or decrease in emotional intensity. Our proposed model integrates these direct and relative prediction perspectives by dividing the emotion recognition task into three easier subtasks. The first subtask involves a multimodal local ranking of relative emotion intensities between two short segments of a video. The second subtask uses local rankings to infer global relative emotion ranks with a Bayesian ranking algorithm. The third subtask incorporates both direct predictions from observed multimodal behaviors and relative emotion ranks from local-global rankings for final emotion prediction. Our approach displays excellent performance on an audio-visual emotion recognition benchmark and improves over other algorithms for multimodal fusion.Comment: ACM International Conference on Multimodal Interaction (ICMI 2018

    Multimodal Relational Tensor Network for Sentiment and Emotion Classification

    Full text link
    Understanding Affect from video segments has brought researchers from the language, audio and video domains together. Most of the current multimodal research in this area deals with various techniques to fuse the modalities, and mostly treat the segments of a video independently. Motivated by the work of (Zadeh et al., 2017) and (Poria et al., 2017), we present our architecture, Relational Tensor Network, where we use the inter-modal interactions within a segment (intra-segment) and also consider the sequence of segments in a video to model the inter-segment inter-modal interactions. We also generate rich representations of text and audio modalities by leveraging richer audio and linguistic context alongwith fusing fine-grained knowledge based polarity scores from text. We present the results of our model on CMU-MOSEI dataset and show that our model outperforms many baselines and state of the art methods for sentiment classification and emotion recognition

    Human-Centered Emotion Recognition in Animated GIFs

    Full text link
    As an intuitive way of expression emotion, the animated Graphical Interchange Format (GIF) images have been widely used on social media. Most previous studies on automated GIF emotion recognition fail to effectively utilize GIF's unique properties, and this potentially limits the recognition performance. In this study, we demonstrate the importance of human related information in GIFs and conduct human-centered GIF emotion recognition with a proposed Keypoint Attended Visual Attention Network (KAVAN). The framework consists of a facial attention module and a hierarchical segment temporal module. The facial attention module exploits the strong relationship between GIF contents and human characters, and extracts frame-level visual feature with a focus on human faces. The Hierarchical Segment LSTM (HS-LSTM) module is then proposed to better learn global GIF representations. Our proposed framework outperforms the state-of-the-art on the MIT GIFGIF dataset. Furthermore, the facial attention module provides reliable facial region mask predictions, which improves the model's interpretability.Comment: Accepted to IEEE International Conference on Multimedia and Expo (ICME) 201

    Efficient Low-rank Multimodal Fusion with Modality-Specific Factors

    Full text link
    Multimodal research is an emerging field of artificial intelligence, and one of the main research problems in this field is multimodal fusion. The fusion of multimodal data is the process of integrating multiple unimodal representations into one compact multimodal representation. Previous research in this field has exploited the expressiveness of tensors for multimodal representation. However, these methods often suffer from exponential increase in dimensions and in computational complexity introduced by transformation of input into tensor. In this paper, we propose the Low-rank Multimodal Fusion method, which performs multimodal fusion using low-rank tensors to improve efficiency. We evaluate our model on three different tasks: multimodal sentiment analysis, speaker trait analysis, and emotion recognition. Our model achieves competitive results on all these tasks while drastically reducing computational complexity. Additional experiments also show that our model can perform robustly for a wide range of low-rank settings, and is indeed much more efficient in both training and inference compared to other methods that utilize tensor representations.Comment: * Equal contribution. 10 pages. Accepted by ACL 201

    Multi-Modal Emotion recognition on IEMOCAP Dataset using Deep Learning

    Full text link
    Emotion recognition has become an important field of research in Human Computer Interactions as we improve upon the techniques for modelling the various aspects of behaviour. With the advancement of technology our understanding of emotions are advancing, there is a growing need for automatic emotion recognition systems. One of the directions the research is heading is the use of Neural Networks which are adept at estimating complex functions that depend on a large number and diverse source of input data. In this paper we attempt to exploit this effectiveness of Neural networks to enable us to perform multimodal Emotion recognition on IEMOCAP dataset using data from Speech, Text, and Motion capture data from face expressions, rotation and hand movements. Prior research has concentrated on Emotion detection from Speech on the IEMOCAP dataset, but our approach is the first that uses the multiple modes of data offered by IEMOCAP for a more robust and accurate emotion detection

    Multi-modal Conditional Attention Fusion for Dimensional Emotion Prediction

    Full text link
    Continuous dimensional emotion prediction is a challenging task where the fusion of various modalities usually achieves state-of-the-art performance such as early fusion or late fusion. In this paper, we propose a novel multi-modal fusion strategy named conditional attention fusion, which can dynamically pay attention to different modalities at each time step. Long-short term memory recurrent neural networks (LSTM-RNN) is applied as the basic uni-modality model to capture long time dependencies. The weights assigned to different modalities are automatically decided by the current input features and recent history information rather than being fixed at any kinds of situation. Our experimental results on a benchmark dataset AVEC2015 show the effectiveness of our method which outperforms several common fusion strategies for valence prediction.Comment: Appeared at ACM Multimedia 201
    • …
    corecore