68,074 research outputs found

    MLVSNet: Multi-level Voting Siamese Network for 3D visual tracking

    Get PDF
    Benefiting from the excellent performance of Siamese-based trackers, huge progress on 2D visual tracking has been achieved. However, 3D visual tracking is still under-explored. Inspired by the idea of Hough voting in 3D object detection, in this paper, we propose a Multi-level Voting Siamese Network (MLVSNet) for 3D visual tracking from outdoor point cloud sequences. To deal with sparsity in outdoor 3D point clouds, we propose to perform Hough voting on multi-level features to get more vote centers and retain more useful information, instead of voting only on the fi-nal level feature as in previous methods. We also design an efficient and lightweight Target-Guided Attention (TGA) module to transfer the target information and highlight the target points in the search area. Moreover, we propose a Vote-cluster Feature Enhancement (VFE) module to exploit the relationships between different vote clusters. Extensive experiments on the 3D tracking benchmark of KITTI dataset demonstrate that our MLVSNet outperforms state-of-the-art methods with significant margins. Code will be available at https://github.com/CodeWZT/MLVSNet

    2D-3D Pose Tracking with Multi-View Constraints

    Full text link
    Camera localization in 3D LiDAR maps has gained increasing attention due to its promising ability to handle complex scenarios, surpassing the limitations of visual-only localization methods. However, existing methods mostly focus on addressing the cross-modal gaps, estimating camera poses frame by frame without considering the relationship between adjacent frames, which makes the pose tracking unstable. To alleviate this, we propose to couple the 2D-3D correspondences between adjacent frames using the 2D-2D feature matching, establishing the multi-view geometrical constraints for simultaneously estimating multiple camera poses. Specifically, we propose a new 2D-3D pose tracking framework, which consists: a front-end hybrid flow estimation network for consecutive frames and a back-end pose optimization module. We further design a cross-modal consistency-based loss to incorporate the multi-view constraints during the training and inference process. We evaluate our proposed framework on the KITTI and Argoverse datasets. Experimental results demonstrate its superior performance compared to existing frame-by-frame 2D-3D pose tracking methods and state-of-the-art vision-only pose tracking algorithms. More online pose tracking videos are available at \url{https://youtu.be/yfBRdg7gw5M}Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    End-to-end Flow Correlation Tracking with Spatial-temporal Attention

    Full text link
    Discriminative correlation filters (DCF) with deep convolutional features have achieved favorable performance in recent tracking benchmarks. However, most of existing DCF trackers only consider appearance features of current frame, and hardly benefit from motion and inter-frame information. The lack of temporal information degrades the tracking performance during challenges such as partial occlusion and deformation. In this work, we focus on making use of the rich flow information in consecutive frames to improve the feature representation and the tracking accuracy. Firstly, individual components, including optical flow estimation, feature extraction, aggregation and correlation filter tracking are formulated as special layers in network. To the best of our knowledge, this is the first work to jointly train flow and tracking task in a deep learning framework. Then the historical feature maps at predefined intervals are warped and aggregated with current ones by the guiding of flow. For adaptive aggregation, we propose a novel spatial-temporal attention mechanism. Extensive experiments are performed on four challenging tracking datasets: OTB2013, OTB2015, VOT2015 and VOT2016, and the proposed method achieves superior results on these benchmarks.Comment: Accepted in CVPR 201
    • …
    corecore