1,253,061 research outputs found

    Off-axis synchrotron light curves from full-time-domain moving-mesh simulations of jets from massive stars

    Full text link
    We present full-time-domain, moving-mesh, relativistic hydrodynamic simulations of jets launched from the center of a massive progenitor star and compute the resulting synchrotron light curves for observers at a range of viewing angles. We follow jet evolution from ignition inside the stellar center, propagation in the stellar envelope and breakout from the stellar surface, then through the coasting and deceleration phases. The jet compresses into a thin shell, sweeps up the circumstellar medium, and eventually enters the Newtonian phase. The jets naturally develop angular and radial structure due to hydro-dynamical interaction with surrounding gas. The calculated synchrotron light curves cover the observed temporal range of prompt to late afterglow phases of long gamma-ray bursts (LGRBs). The on-axis light curves exhibit an early emission pulse originating in shock-heated stellar material, followed by a shallow decay and a later steeper decay. The off-axis light curves rise earlier than previously expected for top-hat jet models -- on a time scale of seconds to minutes after jet breakout, and decay afterwards. Sometimes the off-axis light curves have later re-brightening components that can be contemporaneous with SNe Ic-bl emission. Our calculations may shed light on the structure of GRB outflows in the afterglow stage. The off-axis light curves from full-time-domain simulations advocate new light curve templates for the search of off-axis/orphan afterglows

    Hydrodynamic Approach to Vortex Lifetime in Trapped Bose Condensates

    Full text link
    We study a vortex in a two-dimensional, harmonically trapped Bose-Einstein condensate at zero temperature. Through a variational calculation using a trial condensate wave function and a nonlinear Schroedinger Lagrangian, we obtain the effective potential experienced by a vortex at an arbitrary position in the condensate, and find that an off-center vortex will move in a circular trajectory around the trap center. We find the frequency of this precession to be smaller than the elementary excitation frequencies in the cloud. We also study the radiation of sound from a moving vortex in an infinite, uniform system, and discuss the validity of this as an approximation for the trapped case. Furthermore, we estimate the lifetime of a vortex due to imperfections in the trapping potential.Comment: 10 pages, 1 eps figure, submitted to PRA, adjustments in response to referee, one refernce adde

    Zitterbewegung of optical pulses in nonlinear frequency conversion

    Full text link
    Pulse walk-off in the process of sum frequency generation in a nonlinear χ(2)\chi^{(2)} crystal is shown to be responsible for pulse jittering which is reminiscent to the Zitterbewegung (trembling motion) of a relativistic freely moving Dirac particle. An analytical expression for the pulse center of mass trajectory is derived in the no-pump-depletion limit, and numerical examples of Zitterbewegung are presented for sum frequency generation in periodically-poled lithium niobate. The proposed quantum-optical analogy indicates that frequency conversion in nonlinear optics could provide an experimentally accessible simulator of the Dirac equation.Comment: to be published in Journal of Physics B: Atomic, Molecular & Optical Physic

    Crossover from the chiral to the standard universality classes in the conductance of a quantum wire with random hopping only

    Full text link
    The conductance of a quantum wire with off-diagonal disorder that preserves a sublattice symmetry (the random hopping problem with chiral symmetry) is considered. Transport at the band center is anomalous relative to the standard problem of Anderson localization both in the diffusive and localized regimes. In the diffusive regime, there is no weak-localization correction to the conductance and universal conductance fluctuations are twice as large as in the standard cases. Exponential localization occurs only for an even number of transmission channels in which case the localization length does not depend on whether time-reversal and spin rotation symmetry are present or not. For an odd number of channels the conductance decays algebraically. Upon moving away from the band center transport characteristics undergo a crossover to those of the standard universality classes of Anderson localization. This crossover is calculated in the diffusive regime.Comment: 22 pages, 9 figure

    Two-dimensional quantum liquids from interacting non-Abelian anyons

    Full text link
    A set of localized, non-Abelian anyons - such as vortices in a p_x + i p_y superconductor or quasiholes in certain quantum Hall states - gives rise to a macroscopic degeneracy. Such a degeneracy is split in the presence of interactions between the anyons. Here we show that in two spatial dimensions this splitting selects a unique collective state as ground state of the interacting many-body system. This collective state can be a novel gapped quantum liquid nucleated inside the original parent liquid (of which the anyons are excitations). This physics is of relevance for any quantum Hall plateau realizing a non-Abelian quantum Hall state when moving off the center of the plateau.Comment: 5 pages, 6 figure
    • …
    corecore