334,546 research outputs found

    Markov modeling of moving target defense games

    Get PDF
    We introduce a Markov-model-based framework for Moving Target Defense (MTD) analysis. The framework allows modeling of broad range of MTD strategies, provides general theorems about how the probability of a successful adversary defeating an MTD strategy is related to the amount of time/cost spent by the adversary, and shows how a multi-level composition of MTD strategies can be analyzed by a straightforward combination of the analysis for each one of these strategies. Within the proposed framework we define the concept of security capacity which measures the strength or effectiveness of an MTD strategy: the security capacity depends on MTD specific parameters and more general system parameters. We apply our framework to two concrete MTD strategies

    Toward Smart Moving Target Defense for Linux Container Resiliency

    Full text link
    This paper presents ESCAPE, an informed moving target defense mechanism for cloud containers. ESCAPE models the interaction between attackers and their target containers as a "predator searching for a prey" search game. Live migration of Linux-containers (prey) is used to avoid attacks (predator) and failures. The entire process is guided by a novel host-based behavior-monitoring system that seamlessly monitors containers for indications of intrusions and attacks. To evaluate ESCAPE effectiveness, we simulated the attack avoidance process based on a mathematical model mimicking the prey-vs-predator search game. Simulation results show high container survival probabilities with minimal added overhead.Comment: Published version is available on IEEE Xplore at http://ieeexplore.ieee.org/document/779685

    Characterizing the Power of Moving Target Defense via Cyber Epidemic Dynamics

    Full text link
    Moving Target Defense (MTD) can enhance the resilience of cyber systems against attacks. Although there have been many MTD techniques, there is no systematic understanding and {\em quantitative} characterization of the power of MTD. In this paper, we propose to use a cyber epidemic dynamics approach to characterize the power of MTD. We define and investigate two complementary measures that are applicable when the defender aims to deploy MTD to achieve a certain security goal. One measure emphasizes the maximum portion of time during which the system can afford to stay in an undesired configuration (or posture), without considering the cost of deploying MTD. The other measure emphasizes the minimum cost of deploying MTD, while accommodating that the system has to stay in an undesired configuration (or posture) for a given portion of time. Our analytic studies lead to algorithms for optimally deploying MTD.Comment: 12 pages; 4 figures; Hotsos 14, 201

    Cost-benefit analysis of moving-target defense in power grids

    Get PDF
    We study moving-target defense (MTD) that actively perturbs transmission line reactances to thwart stealthy false data injection (FDI) attacks against state estimation in a power grid. Prior work on this topic has proposed MTD based on randomly selected reactance perturbations, but these perturbations cannot guarantee effective attack detection. To address the issue, we present formal design criteria to select MTD reactance perturbations that are truly effective. However, based on a key optimal power flow (OPF) formulation, we find that the effective MTD may incur a non-trivial operational cost that has not hitherto received attention. Accordingly, we characterize important tradeoffs between the MTD's detection capability and its associated required cost. Extensive simulations, using the MATPOWER simulator and benchmark IEEE bus systems, verify and illustrate the proposed design approach that for the first time addresses both key aspects of cost and effectiveness of the MTD

    A Cost-effective Shuffling Method against DDoS Attacks using Moving Target Defense

    Full text link
    Moving Target Defense (MTD) has emerged as a newcomer into the asymmetric field of attack and defense, and shuffling-based MTD has been regarded as one of the most effective ways to mitigate DDoS attacks. However, previous work does not acknowledge that frequent shuffles would significantly intensify the overhead. MTD requires a quantitative measure to compare the cost and effectiveness of available adaptations and explore the best trade-off between them. In this paper, therefore, we propose a new cost-effective shuffling method against DDoS attacks using MTD. By exploiting Multi-Objective Markov Decision Processes to model the interaction between the attacker and the defender, and designing a cost-effective shuffling algorithm, we study the best trade-off between the effectiveness and cost of shuffling in a given shuffling scenario. Finally, simulation and experimentation on an experimental software defined network (SDN) indicate that our approach imposes an acceptable shuffling overload and is effective in mitigating DDoS attacks
    corecore