796,403 research outputs found

    Separation of Visual and Motor Workspaces During Targeted Reaching Results in Limited Generalization of Visuomotor Adaptation

    Get PDF
    Separating visual and proprioceptive information in terms of workspace locations during reaching movement has been shown to disturb transfer of visuomotor adaptation across the arms. Here, we investigated whether separating visual and motor workspaces would also disturb generalization of visuomotor adaptation across movement conditions within the same arm. Subjects were divided into four experimental groups (plus three control groups). The first two groups adapted to a visual rotation under a “dissociation” condition in which the targets for reaching movement were presented in midline while their arm performed reaching movement laterally. Following that, they were tested in an “association” condition in which the visual and motor workspaces were combined in midline or laterally. The other two groups first adapted to the rotation in one association condition (medial or lateral), then were tested in the other association condition. The latter groups demonstrated complete transfer from the training to the generalization session, whereas the former groups demonstrated substantially limited transfer. These findings suggest that when visual and motor workspaces are separated, two internal models (vision-based one, proprioception-based one) are formed, and that a conflict between the two disrupts the development of an overall representation that underlies adaptation to a novel visuomotor transform

    Concurrent adaptation to opposing visual displacements during an alternating movement.

    Get PDF
    It has been suggested that, during tasks in which subjects are exposed to a visual rotation of cursor feedback, alternating bimanual adaptation to opposing rotations is as rapid as unimanual adaptation to a single rotation (Bock et al. in Exp Brain Res 162:513–519, 2005). However, that experiment did not test strict alternation of the limbs but short alternate blocks of trials. We have therefore tested adaptation under alternate left/right hand movement with opposing rotations. It was clear that the left and right hand, within the alternating conditions, learnt to adapt to the opposing displacements at a similar rate suggesting that two adaptive states were formed concurrently. We suggest that the separate limbs are used as contextual cues to switch between the relevant adaptive states. However, we found that during online correction the alternating conditions had a significantly slower rate of adaptation in comparison to the unimanual conditions. Control conditions indicate that the results are not directly due the alternation between limbs or to the constant switching of vision between the two eyes. The negative interference may originate from the requirement to dissociate the visual information of these two alternating displacements to allow online control of the two arms

    Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces

    Get PDF
    Interlimb transfer of a novel dynamic force has been well documented. It has also been shown that unimanual adaptation to opposing novel environments is possible if they are associated with different workspaces. The main aim of this study was to test if adaptation to opposing velocity dependent viscous forces with one arm could improve the initial performance of the other arm. The study also examined whether this interlimb transfer occurred across an extrinsic, spatial, coordinative system or an intrinsic, joint based, coordinative system. Subjects initially adapted to opposing viscous forces separated by target location. Our measure of performance was the correlation between the speed profiles of each movement within a force condition and an ‘average’ trajectory within null force conditions. Adaptation to the opposing forces was seen during initial acquisition with a significantly improved coefficient in epoch eight compared to epoch one. We then tested interlimb transfer from the dominant to non-dominant arm (D → ND) and vice-versa (ND → D) across either an extrinsic or intrinsic coordinative system. Interlimb transfer was only seen from the dominant to the non-dominant limb across an intrinsic coordinative system. These results support previous studies involving adaptation to a single dynamic force but also indicate that interlimb transfer of multiple opposing states is possible. This suggests that the information available at the level of representation allowing interlimb transfer can be more intricate than a general movement goal or a single perceived directional error

    Honey bee genotypes and the environment

    Get PDF
    Although knowledge about honey bee geographic and genetic diversity has increased tremendously in recent decades (Meixner et al., 2013), the adaptation of honey bees to their local environment has not been well studied. The current demand for high economic performance of bee colonies with desirable behavioural characteristics contributes to changing the natural diversity via mass importations and an increasing practice of queen trade and colony movement. At the same time, there is also a growing movement in opposition to this trend, aimed at conserving the natural heritage of local populations, with on-going projects in several countries (Strange et al., 2008; Dall’Olio et al., 2008, De la Rúa et al., 2009)

    Extended-Service Schools: Putting Programming in Place

    Get PDF
    Spurred by the desire to provide youth with safe havens in non-school hours, enhanced educational experiences, and other developmental opportunities, a movement to open up schools has taken root in cities across the country. More than just an attempt to take advantage of schools' resources and facilities, the movement aims to build a new kind of institution -- one that unites schools and community-based organizations to create vital centers of activity for children, youth, and their families. This interim evaluation report of the Wallace-Readers Digest Funds Extended-Service Schools Adaptation examines what it takes to get a community-oriented school-based youth program off the ground, the early challenges that can be expected, and how the ESS sites addressed their challenges

    On the parametrization of clapping

    Get PDF
    For a Reactive Virtual Trainer(RVT), subtle timing and lifelikeness\ud of motion is of primary importance. To allow for reactivity, movement\ud adaptation, like a change of tempo, is necessary. In this paper we\ud investigate the relation between movement tempo, its synchronization to\ud verbal counting, time distribution, amplitude, and left-right symmetry of\ud a clapping movement. We analyze motion capture data of two subjects\ud performing a clapping exercise, both freely and timed by a metronome.\ud Our findings are compared to existing gesture research and existing biomechanical models. We found that, for our subjects, verbal counting adheres\ud to the phonological synchrony rule. A linear relationship between\ud the movement path length and the tempo was found. The symmetry between\ud the left and the right hand can be described by the biomechanical\ud model of two coupled oscillators

    Contralateral manual compensation for velocity-dependent force perturbations

    Get PDF
    It is not yet clear how the temporal structure of a voluntary action is coded allowing coordinated bimanual responses. This study focuses on the adaptation to and compensation for a force profile presented to one stationary arm which is proportional to the velocity of the other moving arm. We hypothesised that subjects would exhibit predictive coordinative responses which would co-vary with the state of the moving arm. Our null hypothesis is that they develop a time-dependent template of forces appropriate to compensate for the imposed perturbation. Subjects were trained to make 500 ms duration reaching movements with their dominant right arm to a visual target. A force generated with a robotic arm that was proportional to the velocity of the moving arm and perpendicular to movement direction acted on their stationary left hand, either at the same time as the movement or delayed by 250 or 500 ms. Subjects rapidly learnt to minimise the final end-point error. In the delay conditions, the left hand moved in advance of the onset of the perturbing force. In test conditions with faster or slower movement of the right hand, the predictive actions of the left hand co-varied with movement speed. Compensation for movement-related forces appeared to be predictive but not based on an accurate force profile that was equal and opposite to the imposed perturbatio

    Visuomotor Learning Enhanced by Augmenting Instantaneous Trajectory Error Feedback during Reaching

    Get PDF
    We studied reach adaptation to a 30u visuomotor rotation to determine whether augmented error feedback can promote faster and more complete motor learning. Four groups of healthy adults reached with their unseen arm to visual targets surrounding a central starting point. A manipulandum tracked hand motion and projected a cursor onto a display immediately above the horizontal plane of movement. For one group, deviations from the ideal movement were amplified with a gain of 2 whereas another group experienced a gain of 3.1. The third group experienced an offset equal to the average error seen in the initial perturbations, while a fourth group served as controls. Learning in the gain 2 and offset groups was nearly twice as fast as controls. Moreover, the offset group averaged more reduction in error. Such error augmentation techniques may be useful for training novel visuomotor transformations as required of robotic teleoperators or in movement rehabilitation of the neurologically impaired
    corecore