15 research outputs found

    Assistive Robot with an AI-Based Application for the Reinforcement of Activities of Daily Living: Technical Validation with Users Affected by Neurodevelopmental Disorders

    Get PDF
    In this work, we propose the first study of a technical validation of an assistive robotic platform, which has been designed to assist people with neurodevelopmental disorders. The platform is called LOLA2 and it is equipped with an artificial intelligence-based application to reinforce the learning of daily life activities in people with neurodevelopmental problems. LOLA2 has been integrated with an ROS-based navigation system and a user interface for healthcare professionals and their patients to interact with it. Technically, we have been able to embed all these modules into an NVIDIA Jetson Xavier board, as well as an artificial intelligence agent for online action detection (OAD). This OAD approach provides a detailed report on the degree of performance of a set of daily life activities that are being learned or reinforced by users. All the human–robot interaction process to work with users with neurodevelopmental disorders has been designed by a multidisciplinary team. Among its main features are the ability to control the robot with a joystick, a graphical user interface application that shows video tutorials with the activities to reinforce or learn, and the ability to monitor the progress of the users as they complete tasks. The main objective of the assistive robotic platform LOLA2 is to provide a system that allows therapists to track how well the users understand and perform daily tasks. This paper focuses on the technical validation of the proposed platform and its application. To do so, we have carried out a set of tests with four users with neurodevelopmental problems and special physical conditions under the supervision of the corresponding therapeutic personnel. We present detailed results of all interventions with end users, analyzing the usability, effectiveness, and limitations of the proposed technology. During its initial technical validation with real users, LOLA2 was able to detect the actions of users with disabilities with high precision. It was able to distinguish four assigned daily actions with high accuracy, but some actions were more challenging due to the physical limitations of the users. Generally, the presence of the robot in the therapy sessions received excellent feedback from medical professionals as well as patients. Overall, this study demonstrates that our developed robot is capable of assisting and monitoring people with neurodevelopmental disorders in performing their daily living tasks.This research was funded by project AIRPLANE, with reference PID2019-104323RB-C31, of Spain’s Ministry of Science and Innovation

    Do we want to share our lives and bodies with robots? A 2000 people survey

    Get PDF
    For roughly two decades a new generation of robots, robotic prostheses and implantable devices is about to arise accompanied by great optimism that they will widely pervade our daily life in a near future. This paper presents the results from a survey on the question if people want to share their life and body with robots. The survey, carried out in connection with the Robotics exhibition at the Swiss National Exhibition Expo.02, counts over 2000 participants. The questionnaire covers issues on robotics in general, service and personal robots, robotic prostheses and artificial organs. While the results testify a positive attitude towards potential robotic co-workers, flat-mates or body part, they include a number of surprising answers. We find correlations in the data, discuss interpretations, speculate about the answers and cultural influences and finally conclude: Whom are we building robots for and what should they be like? To whom are we selling robots and how should we market them

    The smart house for older persons and persons with physical disabilities: structure, technology arrangements, and perspectives

    Full text link

    Sustainable Technology and Elderly Life

    Get PDF
    The coming years will see an exponential increase in the proportion of elderly people in our society. This accelerated growth brings with it major challenges in relation to the sustainability of the system. There are different aspects where these changes will have a special incidence: health systems and their monitoring; the development of a framework in which the elderly can develop their daily lives satisfactorily; and in the design of intelligent cities adapted to the future sociodemographic profile. The discussion of the challenges faced, together with the current technological evolution, can show possible ways of meeting the challenges. There are different aspects where these changes will have a special incidence: health systems and their monitoring; the development of a framework in which the elderly can develop their daily lives satisfactorily; and in the design of intelligent cities adapted to the future sociodemographic profile. This special issue discusses various ways in which sustainable technologies can be applied to improve the lives of the elderly. Six articles on the subject are featured in this volume. From a systematic review of the literature to the development of gamification and health improvement projects. The articles present suggestive proposals for the improvement of the lives of the elderly. The volume is a resource of interest for the scientific community, since it shows different research gaps in the current state of the art. But it is also a document that can help social policy makers and people working in this domain to planning successful projects

    Ultra high frequency (UHF) radio-frequency identification (RFID) for robot perception and mobile manipulation

    Get PDF
    Personal robots with autonomy, mobility, and manipulation capabilities have the potential to dramatically improve quality of life for various user populations, such as older adults and individuals with motor impairments. Unfortunately, unstructured environments present many challenges that hinder robot deployment in ordinary homes. This thesis seeks to address some of these challenges through a new robotic sensing modality that leverages a small amount of environmental augmentation in the form of Ultra High Frequency (UHF) Radio-Frequency Identification (RFID) tags. Previous research has demonstrated the utility of infrastructure tags (affixed to walls) for robot localization; in this thesis, we specifically focus on tagging objects. Owing to their low-cost and passive (battery-free) operation, users can apply UHF RFID tags to hundreds of objects throughout their homes. The tags provide two valuable properties for robots: a unique identifier and receive signal strength indicator (RSSI, the strength of a tag's response). This thesis explores robot behaviors and radio frequency perception techniques using robot-mounted UHF RFID readers that enable a robot to efficiently discover, locate, and interact with UHF RFID tags applied to objects and people of interest. The behaviors and algorithms explicitly rely on the robot's mobility and manipulation capabilities to provide multiple opportunistic views of the complex electromagnetic landscape inside a home environment. The electromagnetic properties of RFID tags change when applied to common household objects. Objects can have varied material properties, can be placed in diverse orientations, and be relocated to completely new environments. We present a new class of optimization-based techniques for RFID sensing that are robust to the variation in tag performance caused by these complexities. We discuss a hybrid global-local search algorithm where a robot employing long-range directional antennas searches for tagged objects by maximizing expected RSSI measurements; that is, the robot attempts to position itself (1) near a desired tagged object and (2) oriented towards it. The robot first performs a sparse, global RFID search to locate a pose in the neighborhood of the tagged object, followed by a series of local search behaviors (bearing estimation and RFID servoing) to refine the robot's state within the local basin of attraction. We report on RFID search experiments performed in Georgia Tech's Aware Home (a real home). Our optimization-based approach yields superior performance compared to state of the art tag localization algorithms, does not require RF sensor models, is easy to implement, and generalizes to other short-range RFID sensor systems embedded in a robot's end effector. We demonstrate proof of concept applications, such as medication delivery and multi-sensor fusion, using these techniques. Through our experimental results, we show that UHF RFID is a complementary sensing modality that can assist robots in unstructured human environments.PhDCommittee Chair: Kemp, Charles C.; Committee Member: Abowd, Gregory; Committee Member: Howard, Ayanna; Committee Member: Ingram, Mary Ann; Committee Member: Reynolds, Matt; Committee Member: Tentzeris, Emmanoui

    Intelligent technologies for the aging brain: opportunities and challenges

    Get PDF
    Intelligent computing is rapidly reshaping healthcare. In light of the global burden of population aging and neurological disorders, dementia and elderly care are among the healthcare sectors that are most likely to benefit from this technological revolution. Trends in artificial intelligence, robotics, ubiquitous computing, neurotechnology and other branches of biomedical engineering are progressively enabling novel opportunities for technology-enhanced care. These Intelligent Assistive Technologies (IATs) open the prospects of supporting older adults with neurocognitive disabilities, maintain their independence, reduce the burden on caregivers and delay the need for long-term care (1, 2). While technology develops fast, yet little knowledge is available to patients and health professionals about the current availability, applicability, and capability of existing IATs. This thesis proposes a state-of-the-art analysis of IATs in dementia and elderly care. Our findings indicate that advances in intelligent technology are resulting in a rapidly expanding number and variety of assistive solutions for older adults and people with neurocognitive disabilities. However, our analysis identifies a number of challenges that negatively affect the optimal deployment and uptake of IATs among target users and care institutions. These include design issues, sub-optimal approaches to product development, translational barriers between lab and clinics, lack of adequate validation and implementation, as well as data security and cyber-risk weaknesses. Additionally, in virtue of their technological novelty, intelligent technologies raise a number of Ethical, Legal and Social Implications (ELSI). Therefore, a significant portion of this thesis is devoted to providing an early ethical Technology Assessment (eTA) of intelligent technology, hence contributing to preparing the terrain for its safe and ethically responsible adoption. This assessment is primarily focused on intelligent technologies at the human-machine interface, as these applications enable an unprecedented exposure of the intimate dimension of individuals to the digital infosphere. Issues of privacy, integrity, equality, and dual-use were addressed at the level of stakeholder analysis, normative ethics and human-rights law. Finally, this thesis is aimed at providing evidence-based recommendations for guiding participatory and responsible development in intelligent technology, and delineating governance strategies that maximize the clinical benefits of IATs for the aging world, while minimizing unintended risks
    corecore