174,142 research outputs found

    GENERATION OF MOUSE INDUCED PLURIPOTENT STEM CELLS BY PROTEIN TRANSDUCTION.

    Get PDF
    Somatic cell reprogramming has generated enormous interest after the first report by Yamanaka and his coworkers in 2006 on the generation of induced pluripotent stem cells (iPSCs) from mouse fibroblasts. Here we report the generation of stable iPSCs from mouse fibroblasts by recombinant protein transduction (Klf4, Oct4, Sox2 and c-Myc), a procedure designed to circumvent the risks caused by integration of exogenous sequences in the target cell genome associated with gene delivery systems. The recombinant proteins were fused in frame to the GST tag for affinity purification and to the TAT-NLS polypeptide to facilitate membrane penetration and nuclear localization. We performed the reprogramming procedure on embryonic fibroblasts from inbred (C57BL6) and outbred (ICR) mouse strains. The cells were treated with purified proteins four times, at 48-hour intervals, and cultured on mitomycin C treated MEF (mouse embryonic fibroblast) cells in complete embryonic stem cell medium until colonies formed. The iPSCs generated from the outbred fibroblasts exhibited similar morphology and growth properties to embryonic stem (ESC) cells and were sustained in an undifferentiated state for more than 20 passages. The cells were checked for pluripotency-related markers (Oct4, Sox2, Klf4, cMyc, Nanog) by immunocytochemistry and by RT-PCR. The protein iPSCs (piPSCs) formed EBs and subsequently differentiated towards all three germ layer lineages. Importantly the piPSCs could incorporate into the blastocyst and led to variable degrees of chimerism in newborn mice. These data show that recombinant purified cell-penetrating proteins are capable of reprogramming mouse embryonic fibroblasts to iPSCs. We also demonstrated that the cells of the generated cell line satisfied all the requirements of bona fide mouse ESC cells: form round colonies with defined boundaries; have a tendency to attach together with high nuclear/cytoplasmic ratio; express key pluripotency markers; and are capable of in vitro differentiation into ecto-, endo-, and mesoderm, and in vivo chimera formation

    Direct comparison of distinct naive pluripotent states in human embryonic stem cells

    Get PDF
    Until recently, human embryonic stem cells (hESCs) were shown to exist in a state of primed pluripotency, while mouse embryonic stem cells (mESCs) display a naive or primed pluripotent state. Here we show the rapid conversion of in-house-derived primed hESCs on mouse embryonic feeder layer (MEF) to a naive state within 5-6 days in naive conversion media (NCM-MEF), 6-10 days in naive human stem cell media (NHSM-MEF) and 14-20 days using the reverse-toggle protocol (RT-MEF). We further observe enhanced unbiased lineage-specific differentiation potential of naive hESCs converted in NCM-MEF, however, all naive hESCs fail to differentiate towards functional cell types. RNA-seq analysis reveals a divergent role of PI3K/AKT/mTORC signalling, specifically of the mTORC2 subunit, in the different naive hESCs. Overall, we demonstrate a direct evaluation of several naive culture conditions performed in the same laboratory, thereby contributing to an unbiased, more in-depth understanding of different naive hESCs

    Lipofection improves gene targeting efficiency in E14 TG2a mouse embryonic stem cells

    Get PDF
    Electroporation has been the method of election for transfection of murine embryonic stem cells for over 15 years; however, it is a time consuming protocol because it requires large amounts of DNA and cells, as well as expensive and delicate equipment. Lipofection is a transfection method that requires lower amounts of cells and DNA than electroporation, and has proven to be effi cient in a large number of cell lines. It has been shown that after lipofection, mouse embryonic stem cells remain pluripotent, capable of forming germ line chimeras and can be transfected with greater effi ciency than with electroporation; however, gene targeting of mouse embryonic stem cells by lipofection has not been reported. The objective of this work was to fi nd out if lipofection can be used as effi ciently as electroporation for regular gene targeting protocols. This context compares gene targeting effi ciency between these techniques in mouse embryonic stem cells E14TG2a, using a gene replacement type vector. No differences were found in gene targeting effi ciency between groups; however, lipofection was three times more effi cient than electroporation in transfection effi ciency, which makes lipofection a less expensive alternative method to produce gene targeting in mouse embryonic stem cells

    Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types.

    Get PDF
    Many subtypes of cortical interneurons (CINs) are found in adult mouse cortices, but the mechanism generating their diversity remains elusive. We performed single-cell RNA sequencing on the mouse embryonic medial ganglionic eminence (MGE), the major birthplace for CINs, and on MGE-like cells differentiated from embryonic stem cells. Two distinct cell types were identified as proliferating neural progenitors and immature neurons, both of which comprised sub-populations. Although lineage development of MGE progenitors was reconstructed and immature neurons were characterized as GABAergic, cells that might correspond to precursors of different CINs were not identified. A few non-neuronal cell types were detected, including microglia. In vitro MGE-like cells resembled bona fide MGE cells but expressed lower levels of Foxg1 and Epha4. Together, our data provide detailed understanding of the embryonic MGE developmental program and suggest how CINs are specified

    Lamin A/C Haploinsufficiency Modulates the Differentiation Potential of Mouse Embryonic Stem Cells

    Get PDF
    BACKGROUND: Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. METHODOLOGY AND PRINCIPAL FINDINGS: We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (). Undifferentiated wild-type and embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with embryonic stem cells. CONCLUSIONS: We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development

    Successful reprogramming of epiblast stem cells by blocking nuclear localization of β-catenin.

    Get PDF
    Epiblast stem cells (EpiSCs) in mice and rats are primed pluripotent stem cells (PSCs). They barely contribute to chimeric embryos when injected into blastocysts. Reprogramming of EpiSCs to embryonic stem cell (ESC)-like cells (rESCs) may occur in response to LIF-STAT3 signaling; however, low reprogramming efficiency hampers potential use of rESCs in generating chimeras. Here, we describe dramatic improvement of conversion efficiency from primed to naive-like PSCs through upregulation of E-cadherin in the presence of the cytokine LIF. Analysis revealed that blocking nuclear localization of β-CATENIN with small-molecule inhibitors significantly enhances reprogramming efficiency of mouse EpiSCs. Although activation of Wnt/β-catenin signals has been thought desirable for maintenance of naive PSCs, this study provides the evidence that inhibition of nuclear translocation of β-CATENIN enhances conversion of mouse EpiSCs to naive-like PSCs (rESCs). This affords better understanding of gene regulatory circuits underlying pluripotency and reprogramming of PSCs

    LINE-1 Based Insertional Mutagenesis Screens to Identify Genes Involved in Embryonic Stem Cell Differentiation

    No full text
    Background: Knowledge of the intrinsic properties of embryonic stem cells is essential before the possibility of using these cells for therapeutic purposes becomes a reality. Insertional mutagenesis screens are widely used to identify genes sufficient to confer a particular phenotype; however, applications of such approaches are limited to mouse models. Thus, there is a need to develop a new DNA transposon system that allows gene discovery approaches in stem cells. Methods: This study was performed to explore the possibility of using the long interspersed nuclear element 1 (LINE -1) retrotransposon as a gene trap vector to identify genes involved in the maintenance and differentiation of mouse embryonic stem cells. Results: We developed an episomal, nonviral LINE-1 retrotransposon system using the scaffold/matrix attachment regions in the backbone of our vector. This gene trap vector harbors a GFP marker whose expression occurs only after successful insertional mutagenesis. By utilizing this vector, coupled with GFP expression, we have successfully isolated four individual embryonic stem cell clones that display disrupted genes, including two known genes. We then confirmed the identity of these genes using an inverse PCR approach and verified their function in cell differentiation using shRNAs and undifferentiated markers of embryonic stem cells. Conclusions: The ease of using this insertional mutagen and the simplicity of identifying the cells with disrupted genes by GFP expression make this LINE-1 vector a promising tool for embryonic stem cell and cancer stem cell gene discovery

    Development of chick embryo explant cultures as an assay system to test mammalian stem cell migration and differentiation after transplantation

    Get PDF
    Abstract only availableStem cells are undifferentiated cells capable of achieving multiple developmental fates. The embryonic stem (ES) cell can differentiate into all cells of the body. Our stem cell research focuses on the repair and/or renewal of cells in the central nervous system with potential applications for treatment of such diseases as Parkinson's disease, ALS, Alzhiemers disease, Batten's disease, as well as other neurodegenerative disorders and injuries to the CNS. An important problem is to determine the potential of stem cells to achieve various fates after transplantation. In the present study, we developed the chick embryo explant culture as an assay system to test the ability of mouse embryonic stem cells to migrate and differentiate after transplantation. The focus of this study was to monitor the survival, migration, and incorporation of the mouse ES cells after transplantation into chick embryos and to develop an explant culture method. The explant cultures will enable repeated viewing of transplanted stem cells at various time post-transplantation. Initially to establish chick embryo explants, chicken embryos were excised from the yolk at stage 8 and transferred to agar/albumen culture dishes containing antibiotics. The chick embryos explants were incubated at 37oC in a humidified chamber to continue growth and development, and explants were viewed multiple times. To date, chick embryos survived up to 47 hours after explantation. Successful explants were obtained as determined by normal embryonic development and the presence of a normal heartbeat. For stem cell transplant experiments, green fluorescent protein (GFP)-expressing mouse ES cells were transplanted into the head region of stage 10 chick embryos while the embryos were still in the egg (i.e., in ovo). Immediately following transplantation, explant cultures were established and embryonic development was allowed to proceed for up to 28 hours (~stage 15-16). The embryos were screened using a fluorescence microscope to test for the presence and fate of transplanted mouse ES cells. Ten micrometers thick transverse sections of the embryos were examined and GFP-expressing cells were found in the lower head region around the neural tube. The transplanted ES cells appeared to contribute to embryonic mesoderm. Future experiments will test whether transplanted stem cells can incorporate into the neural tube and differentiate into neural cells.NSF-REU Biology & Biochemistr

    Mechanisms of action of hESC-secreted proteins that enhance human and mouse myogenesis.

    Get PDF
    Adult stem cells grow poorly in vitro compared to embryonic stem cells, and in vivo stem cell maintenance and proliferation by tissue niches progressively deteriorates with age. We previously reported that factors produced by human embryonic stem cells (hESCs) support a robust regenerative capacity for adult and old mouse muscle stem/progenitor cells. Here we extend these findings to human muscle progenitors and investigate underlying molecular mechanisms. Our results demonstrate that hESC-conditioned medium enhanced the proliferation of mouse and human muscle progenitors. Furthermore, hESC-produced factors activated MAPK and Notch signaling in human myogenic progenitors, and Delta/Notch-1 activation was dependent on MAPK/pERK. The Wnt, TGF-β and BMP/pSmad1,5,8 pathways were unresponsive to hESC-produced factors, but BMP signaling was dependent on intact MAPK/pERK. c-Myc, p57, and p18 were key effectors of the enhanced myogenesis promoted by the hECS factors. To define some of the active ingredients of the hESC-secretome which may have therapeutic potential, a comparative proteomic antibody array analysis was performed and identified several putative proteins, including FGF2, 6 and 19 which as ligands for MAPK signaling, were investigated in more detail. These studies emphasize that a youthful signaling of multiple signaling pathways is responsible for the pro-regenerative activity of the hESC factors
    corecore