219 research outputs found

    Riordan Paths and Derangements

    Full text link
    Riordan paths are Motzkin paths without horizontal steps on the x-axis. We establish a correspondence between Riordan paths and (321,31ˉ42)(321,3\bar{1}42)-avoiding derangements. We also present a combinatorial proof of a recurrence relation for the Riordan numbers in the spirit of the Foata-Zeilberger proof of a recurrence relation on the Schr\"oder numbers.Comment: 9 pages, 2 figure

    Minimal factorizations of permutations into star transpositions

    Get PDF
    We give a compact expression for the number of factorizations of any permutation into a minimal number of transpositions of the form (excluded due to format error) source. This generalizes earlier work of Pak in which substantial restrictions were placed on the permutation being factored. Our result exhibits an unexpected and simple symmetry of star factorizations that has yet to be explained in a satisfactory manner

    Stable multivariate WW-Eulerian polynomials

    Full text link
    We prove a multivariate strengthening of Brenti's result that every root of the Eulerian polynomial of type BB is real. Our proof combines a refinement of the descent statistic for signed permutations with the notion of real stability-a generalization of real-rootedness to polynomials in multiple variables. The key is that our refined multivariate Eulerian polynomials satisfy a recurrence given by a stability-preserving linear operator. Our results extend naturally to colored permutations, and we also give stable generalizations of recent real-rootedness results due to Dilks, Petersen, and Stembridge on affine Eulerian polynomials of types AA and CC. Finally, although we are not able to settle Brenti's real-rootedness conjecture for Eulerian polynomials of type DD, nor prove a companion conjecture of Dilks, Petersen, and Stembridge for affine Eulerian polynomials of types BB and DD, we indicate some methods of attack and pose some related open problems.Comment: 17 pages. To appear in J. Combin. Theory Ser.
    • …
    corecore