3,294,158 research outputs found

    Toyota Motor Manufacturing, USA, Inc.: Background Information Submitted to the Commission on the Future of Worker-Management Relations

    Get PDF
    Background_Toyota_091593.pdf: 2920 downloads, before Oct. 1, 2020

    Pain-motor integration in the primary motor cortex in Parkinson's disease

    Get PDF
    In Parkinson's disease (PD), the influence of chronic pain on motor features has never been investigated. We have recently designed a technique that combines nociceptive system activation by laser stimuli and primary motor cortex (M1) activation through transcranial magnetic stimulation (TMS), in a laser-paired associative stimulation design (Laser-PAS). In controls, Laser-PAS induces long-term changes in motor evoked potentials reflecting M1 long-term potentiation-like plasticity, arising from pain-motor integration

    Developmental motor profile in preschool children with primary stereotypic movement disorder

    Get PDF
    Aim. Different neuropsychological dysfunctions have been described in children with primary Stereotypic Movement Disorder (SMD), mainly attention or motor coordination problems. Up to now with no study has evaluated psychomotor functions in preschoolers primary SMD. The aim of this observational study was to gather information on the motor profiles of SMD patients in this age range in comparison with typically developing children. Patients and Methods. Twenty-six children (four girls) aged 36 to 76 months (mean= 53 ±10) with primary SMD were assessed by a structured evaluation including the Movement Assessment Battery for Children-Second Edition (MABC-2), the Beery-Buktenica Developmental test of Visual-Motor Integration (VMI), the Repetitive Behaviour Scale-Revised (RBS-R), the Motor Severity Stereotypy Scale (MSSS), and the Child Behaviour Checklist (CBCL). The diagnoses of Intellectual Disability or Autism Spectrum Disorder were exclusion criteria from the study. A comparison group of twenty-seven (four girls) typically developing children without stereotypies aged 36 to 59 months (mean= 48 ±7) was also examined. Results. The MABC-2 total score was lower than 15th percentile in fifteen children with SMD (58%); the worst performances were observed in Balance and Manual Dexterity subtests. The motor coordination score of VMI was lower than 15th percentile in ten children (38%). The majority of the children with low scores at MABC-2 also had low scores at the motor coordination subscale of VMI. MABC-2 standard scores of the clinical group were significantly lower than those of controls on MABC-2 Total, Balance, and Ball Skills subtests. Conclusion. The finding of widespread dysfunction of gross and fine motor abilities in preschoolers with primary SMD seems to delineate a peculiar phenotype and could provide new approaches to the management of this neurodevelopment disorder

    The General Motor Ability Hypothesis: An old idea revisited

    Get PDF
    While specific motor abilities have become a popular explanation for motor performance, the older, alternate notion of a general motor ability should be revisited. Current theories lack consensus, and most motor assessment tools continue to derive a single composite score to represent motor capacity. In addition, results from elegant statistical procedures such as higher order factor analyses, cluster analyses, and Item Response Theory support a more global motor ability. We propose a contemporary model of general motor ability as a unidimensional construct that is emergent and fluid over an individual’s lifespan, influenced by both biological and environmental factors. In this article, we address the implications of this model for theory, practice, assessment, and research. Based on our hypothesis and Item Response Theory, our Lifespan Motor Ability Scale can identify motor assessment tasks that are relevant and important across varied phases of lifespan development

    A study of frequency and pulses for stepper motor controller system by using programmable logic controller

    Get PDF
    The stepper motor movement process produced different frequency and pulses. This research explained about the frequency and pulses for the stepper motor movement by using Programmable Logic Controller (PLC) as research method. The study was done to find the suitable frequency and pulses for stepper motor movement by developing a prototype stepper motor controller system. The pulse frequency used did not affected the distance of moving load in the stepper motor operations. The increasing number of pulse frequency only will affect the time taken for the stepper motor to complete its operations. The result showed that number of pulse frequency at high operation was 5000 Hz. Pulse number reacted as a manipulated variable that affected both factor which is time taken of stepper motor operation and the distance of moving load

    Developmental change in motor competence : a latent growth curve analysis

    Get PDF
    Background: The development of childhood motor competence demonstrates a high degree of inter-individual variation. Some children's competence levels increase whilst others' competence levels remain unchanged or even decrease over time. However, few studies have examined this developmental change in motor competence across childhood and little is known on influencing factors. Aim: Using latent growth curve modeling (LGCM), the present longitudinal study aimed to investigate children's change in motor competence across a 2-year timespan and to examine the potential influence of baseline weight status and physical fitness on their trajectory of change in motor competence. Methods: 558 children (52.5% boys) aged between 6 and 9 years participated in this study. Baseline measurements included weight status, motor competence (i.e., Korperkoordinationstest fur Kinder; KTK) and physical fitness (i.e., sit and reach, standing long jump and the 20 m shuttle run test). Motor competence assessment took place three times across a 2-year timespan. LGCM was conducted to examine change in motor competence over time. Results: The analyses showed a positive linear change in motor competence across 2 years (beta = 28.48, p < 0.001) with significant variability in children's individual trajectories (p < 0.001). Girls made less progress than boys (beta = -2.12, p = 0.01). Children who were older at baseline demonstrated less change in motor competence (beta = -0.33, p < 0.001). Weight status at baseline was negatively associated with change in motor competence over time (beta = -1.418, p = 0.002). None of the physical fitness components, measured at baseline, were significantly associated with change in motor competence over time. Conclusion and Implications: This longitudinal study reveals that weight status significantly influences children's motor competence trajectories whilst physical fitness demonstrated no significant influence on motor competence trajectories. Future studies should further explore children's differential trajectories over time and potential factors influencing that change
    corecore