16 research outputs found

    Ongoing Emergence: A Core Concept in Epigenetic Robotics

    Get PDF
    We propose ongoing emergence as a core concept in epigenetic robotics. Ongoing emergence refers to the continuous development and integration of new skills and is exhibited when six criteria are satisfied: (1) continuous skill acquisition, (2) incorporation of new skills with existing skills, (3) autonomous development of values and goals, (4) bootstrapping of initial skills, (5) stability of skills, and (6) reproducibility. In this paper we: (a) provide a conceptual synthesis of ongoing emergence based on previous theorizing, (b) review current research in epigenetic robotics in light of ongoing emergence, (c) provide prototypical examples of ongoing emergence from infant development, and (d) outline computational issues relevant to creating robots exhibiting ongoing emergence

    Emerging Linguistic Functions in Early Infancy

    Get PDF
    This paper presents results from experimental studies on early language acquisition in infants and attempts to interpret the experimental results within the framework of the Ecological Theory of Language Acquisition (ETLA) recently proposed by (Lacerda et al., 2004a). From this perspective, the infant’s first steps in the acquisition of the ambient language are seen as a consequence of the infant’s general capacity to represent sensory input and the infant’s interaction with other actors in its immediate ecological environment. On the basis of available experimental evidence, it will be argued that ETLA offers a productive alternative to traditional descriptive views of the language acquisition process by presenting an operative model of how early linguistic function may emerge through interaction

    Evolving robot empathy towards humans with motor disabilities through artificial pain generation

    Full text link
    © 2018 the Author(s). In contact assistive robots, a prolonged physical engagement between robots and humans with motor disabilities due to shoulder injuries, for instance, may at times lead humans to experience pain. In this situation, robots will require sophisticated capabilities, such as the ability to recognize human pain in advance and generate counter-responses as follow up emphatic action. Hence, it is important for robots to acquire an appropriate pain concept that allows them to develop these capabilities. This paper conceptualizes empathy generation through the realization of synthetic pain classes integrated into a robot's self-awareness framework, and the implementation of fault detection on the robot body serves as a primary source of pain activation. Projection of human shoulder motion into the robot arm motion acts as a fusion process, which is used as a medium to gather information for analyses then to generate corresponding synthetic pain and emphatic responses. An experiment is designed to mirror a human peer's shoulder motion into an observer robot. The results demonstrate that the fusion takes place accurately whenever unified internal states are achieved, allowing accurate classification of synthetic pain categories and generation of empathy responses in a timely fashion. Future works will consider a pain activation mechanism development

    The role of attention in robot self-awareness

    Full text link
    A robot may not be truly self-aware even though it can have some characteristics of self-awareness, such as having emotional states or the ability to recognize itself in the mirror. We define self-awareness in robots to be characterized by the capacity to direct attention toward their own mental state. This paper explores robot self-awareness and the role that attention plays in the achievement self-awareness. We propose a new attention based approach to self-awareness called ASMO and conduct a comparative analysis of approaches that highlights the innovation and benefits of ASMO. We then describe how our attention based self-awareness can be designed and used to develop self-awareness in state-of-the-art humanoidal robots. © 2009 IEEE

    Robot manipulator self-identification for surrounding obstacle detection

    Get PDF
    Obstacle detection plays an important role for robot collision avoidance and motion planning. This paper focuses on the study of the collision prediction of a dual-arm robot based on a 3D point cloud. Firstly, a self-identification method is presented based on the over-segmentation approach and the forward kinematic model of the robot. Secondly, a simplified 3D model of the robot is generated using the segmented point cloud. Finally, a collision prediction algorithm is proposed to estimate the collision parameters in real-time. Experimental studies using the KinectⓇ sensor and the BaxterⓇ robot have been performed to demonstrate the performance of the proposed algorithm

    A Robot Succeeds in 100% Mirror Image Cognition

    Get PDF
    corecore