3 research outputs found

    Service Robots in Healthcare Settings

    Get PDF
    Robots will play a part in all aspects of healthcare. The presence of service robots in healthcare demands special attention, whether it is in the automation of menial labour, prescription distribution, or offering comfort. In this chapter, we examine the several applications of healthcare-oriented robots in the acute, ambulatory and at-home settings. We discuss the role of robotics in reducing environmental dangers, as well as at the patient’s bedside and in the operating room, in the acute setting. We examine how robotics can protect and scale up healthcare services in the ambulatory setting. Finally, in the at-home scenario, we look at how robots can be employed for both rural/remote healthcare delivery and home-based care. In addition to assessing the current state of robotics at the interface of healthcare delivery, we describe critical problems for the future where such technology will be ubiquitous. Patients, health care workers, institutions, insurance companies, and governments will realize that service robots will deliver significant benefits in the future in terms of leverage and cost savings, while maintaining or improving access, equity, and high-quality health care

    Motion-compensated autonomous scanning for tumour localisation using intraoperative ultrasound

    Get PDF
    Intraoperative ultrasound facilitates localisation of tumour boundaries during minimally invasive procedures. Autonomous ultrasound scanning systems have been recently proposed to improve scanning accuracy and reduce surgeons’ cognitive load. However, current methods mainly consider static scanning environments typically with the probe pressing against the tissue surface. In this work, a motion-compensated autonomous ultrasound scanning system using the da Vinci® Research Kit (dVRK) is proposed. An optimal scanning trajectory is generated considering both the tissue surface shape and the ultrasound transducer dimensions. An effective vision-based approach is proposed to learn the underlying tissue motion characteristics. The learned motion model is then incorporated into the visual servoing framework. The proposed system has been validated with both phantom and ex vivo experiments

    Improving access to ultrasound imaging in northern, remote communities

    Get PDF
    Access to healthcare services—including access to medical imaging—is an important determinant of health outcomes. This thesis aims to improve understanding of and address gaps in access to ultrasound imaging for patients in northern, remote communities, and advance a novel ultrasound technology with the ultimate goal of improving patient care and health outcomes. This thesis first brings greater understanding of patients’ perceptions of access and factors which shape access to ultrasound imaging in northern, remote communities in Saskatchewan, Canada. A qualitative study was performed using interpretive description as a methodological approach and a multi-dimensional conceptualization of access to care as a theoretical framework. The study identified barriers which patients in northern, remote communities face in accessing ultrasound imaging, and demonstrated that geographic remoteness from imaging facilities was a central barrier. To determine whether disparities in access to ultrasound imaging resulted in disparities in utilization of ultrasound services, two population-based studies assessed the association between sociodemographic and geographic factors and obstetrical and non-obstetrical ultrasound utilization in Saskatchewan. In the first study investigating obstetrical ultrasound utilization, multivariate logistic regression analysis demonstrated that women living in rural areas, remote areas, and low income neighbourhoods, as well as status First Nations women, were less likely to have a second trimester ultrasound, an important aspect of prenatal care. In a second study investigating non-obstetrical ultrasound utilization across the entire provincial population, multivariate Poisson regression analysis similarly demonstrated lower rates of non-obstetrical ultrasound utilization among individuals living in rural and remote areas, individuals residing in low income neighbourhoods, and status First Nations persons. To address the barriers which patients in northern, remote communities face in accessing ultrasound imaging and to minimize disparities in ultrasound imaging utilization as identified in previous studies in this thesis, telerobotic ultrasound technology was investigated as a solution to improve access to ultrasound imaging. Using this technology, radiologists and sonographers could remotely manipulate an ultrasound probe via a robotic arm, thereby remotely performing an ultrasound exam while patients remained in their home community. A clinical trial comparing conventional and telerobotic ultrasound approaches was undertaken, validating this technology for obstetrical ultrasound imaging. To determine the feasibility of using telerobotic technology to establish an ultrasound service delivery model to remotely provide diagnostic ultrasound exams in underserved communities, pilot telerobotic ultrasound clinics were developed in three northern, remote communities. Telerobotic ultrasound exams were sufficient for diagnosis in the majority of cases, minimizing travel or reducing wait times for these patients. This technology was subsequently evaluated during a COVID-19 outbreak in northern Saskatchewan, demonstrating the potential of this technology to provide critical ultrasound services to an underserved northern population and minimize health inequities during the COVID-19 pandemic. An economic evaluation was performed to compare a service delivery model using telerobotic ultrasound technology to alternative service delivery models. Telerobotic ultrasound combined with an itinerant sonographer service was found to be the lowest cost option from both a publicly funded healthcare payer perspective and a societal perspective for many northern, remote communities. This thesis provides key insights for health system leaders seeking improved understanding and novel solutions to improve access to ultrasound imaging in northern, remote communities. Findings suggest that telerobotic ultrasound is a viable solution to improve access to ultrasound imaging and reduce costs associated with ultrasound service delivery. Evidence in this thesis may be used to help improve ultrasound services and health equity for patients in underserved northern, remote communities. Continued respectful collaboration with northern, remote, Indigenous peoples and communities will be a critical aspect to ensure that ultrasound services meet community needs
    corecore