7,523 research outputs found

    Mobiles and wearables: owner biometrics and authentication

    Get PDF
    We discuss the design and development of HCI models for authentication based on gait and gesture that can be supported by mobile and wearable equipment. The paper proposes to use such biometric behavioral traits for partially transparent and continuous authentication by means of behavioral patterns. © 2016 Copyright held by the owner/author(s)

    A human computer interactions framework for biometric user identification

    Get PDF
    Computer assisted functionalities and services have saturated our world becoming such an integral part of our daily activities that we hardly notice them. In this study we are focusing on enhancements in Human-Computer Interaction (HCI) that can be achieved by natural user recognition embedded in the employed interaction models. Natural identification among humans is mostly based on biometric characteristics representing what-we-are (face, body outlook, voice, etc.) and how-we-behave (gait, gestures, posture, etc.) Following this observation, we investigate different approaches and methods for adapting existing biometric identification methods and technologies to the needs of evolving natural human computer interfaces

    A Framework for Interactive Teaching of Virtual Borders to Mobile Robots

    Full text link
    The increasing number of robots in home environments leads to an emerging coexistence between humans and robots. Robots undertake common tasks and support the residents in their everyday life. People appreciate the presence of robots in their environment as long as they keep the control over them. One important aspect is the control of a robot's workspace. Therefore, we introduce virtual borders to precisely and flexibly define the workspace of mobile robots. First, we propose a novel framework that allows a person to interactively restrict a mobile robot's workspace. To show the validity of this framework, a concrete implementation based on visual markers is implemented. Afterwards, the mobile robot is capable of performing its tasks while respecting the new virtual borders. The approach is accurate, flexible and less time consuming than explicit robot programming. Hence, even non-experts are able to teach virtual borders to their robots which is especially interesting in domains like vacuuming or service robots in home environments.Comment: 7 pages, 6 figure

    Pickup usability dominates: a brief history of mobile text entry research and adoption

    Get PDF
    Text entry on mobile devices (e.g. phones and PDAs) has been a research challenge since devices shrank below laptop size: mobile devices are simply too small to have a traditional full-size keyboard. There has been a profusion of research into text entry techniques for smaller keyboards and touch screens: some of which have become mainstream, while others have not lived up to early expectations. As the mobile phone industry moves to mainstream touch screen interaction we will review the range of input techniques for mobiles, together with evaluations that have taken place to assess their validity: from theoretical modelling through to formal usability experiments. We also report initial results on iPhone text entry speed

    SymbolDesign: A User-centered Method to Design Pen-based Interfaces and Extend the Functionality of Pointer Input Devices

    Full text link
    A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.National Science Foundation (IIS-0093367, IIS-0308213, IIS-0329009, EIA-0202067
    • …
    corecore