4,008 research outputs found

    Enhanced visualisation of dance performance from automatically synchronised multimodal recordings

    Get PDF
    The Huawei/3DLife Grand Challenge Dataset provides multimodal recordings of Salsa dancing, consisting of audiovisual streams along with depth maps and inertial measurements. In this paper, we propose a system for augmented reality-based evaluations of Salsa dancer performances. An essential step for such a system is the automatic temporal synchronisation of the multiple modalities captured from different sensors, for which we propose efficient solutions. Furthermore, we contribute modules for the automatic analysis of dance performances and present an original software application, specifically designed for the evaluation scenario considered, which enables an enhanced dance visualisation experience, through the augmentation of the original media with the results of our automatic analyses

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    Design, Implementation, and Evaluation of a Point Cloud Codec for Tele-Immersive Video

    Full text link

    Optimized Camera Handover Scheme in Free Viewpoint Video Streaming

    Get PDF
    Free-viewpoint video (FVV) is a promising approach that allows users to control their viewpoint and generate virtual views from any desired perspective. The individual user viewpoints are synthetized from two or more camera streams and correspondent depth sequences. In case of continuous viewpoint changes, the camera inputs of the view synthesis process must be changed in a seamless way, in order to avoid the starvation of the viewpoint synthesizer algorithm. Starvation occurs when the desired user viewpoint cannot be synthetized with the currently streamed camera views, thus the FVV playout interrupts. In this paper we proposed three camera handover schemes (TCC, MA, SA) based on viewpoint prediction in order to minimize the probability of playout stalls and find the tradeoff between the image quality and the camera handover frequency. Our simulation results show that the introduced camera switching methods can reduce the handover frequency with more than 40%, hence the viewpoint synthesis starvation and the playout interruption can be minimized. By providing seamless viewpoint changes, the quality of experience can be significantly improved, making the new FVV service more attractive in the future

    Source coding for transmission of reconstructed dynamic geometry: a rate-distortion-complexity analysis of different approaches

    Get PDF
    Live 3D reconstruction of a human as a 3D mesh with commodity electronics is becoming a reality. Immersive applications (i.e. cloud gaming, tele-presence) benefit from effective transmission of such content over a bandwidth limited link. In this paper we outline different approaches for compressing live reconstructed mesh geometry based on distributing mesh reconstruction functions between sender and receiver. We evaluate rate-performance-complexity of different configurations. First, we investigate 3D mesh compression methods (i.e. dynamic/static) from MPEG-4. Second, we evaluate the option of using octree based point cloud compression and receiver side surface reconstruction

    Survey of image-based representations and compression techniques

    Get PDF
    In this paper, we survey the techniques for image-based rendering (IBR) and for compressing image-based representations. Unlike traditional three-dimensional (3-D) computer graphics, in which 3-D geometry of the scene is known, IBR techniques render novel views directly from input images. IBR techniques can be classified into three categories according to how much geometric information is used: rendering without geometry, rendering with implicit geometry (i.e., correspondence), and rendering with explicit geometry (either with approximate or accurate geometry). We discuss the characteristics of these categories and their representative techniques. IBR techniques demonstrate a surprising diverse range in their extent of use of images and geometry in representing 3-D scenes. We explore the issues in trading off the use of images and geometry by revisiting plenoptic-sampling analysis and the notions of view dependency and geometric proxies. Finally, we highlight compression techniques specifically designed for image-based representations. Such compression techniques are important in making IBR techniques practical.published_or_final_versio
    corecore