43,978 research outputs found
On the differential geometry of curves in Minkowski space
We discuss some aspects of the differential geometry of curves in Minkowski
space. We establish the Serret-Frenet equations in Minkowski space and use them
to give a very simple proof of the fundamental theorem of curves in Minkowski
space. We also state and prove two other theorems which represent Minkowskian
versions of a very known theorem of the differential geometry of curves in
tridimensional Euclidean space. We discuss the general solution for torsionless
paths in Minkowki space. We then apply the four-dimensional Serret-Frenet
equations to describe the motion of a charged test particle in a constant and
uniform electromagnetic field and show how the curvature and the torsions of
the four-dimensional path of the particle contain information on the
electromagnetic field acting on the particle.Comment: 10 pages. Typeset using REVTE
Acceleration of charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field
To test the role of large-scale magnetic fields in accretion processes, we
study dynamics of charged test particles in vicinity of a black hole immersed
into an asymptotically uniform magnetic field. Using the Hamiltonian formalism
of charged particle dynamics, we examine chaotic scattering in the effective
potential related to the black hole gravitational field combined with the
uniform magnetic field. Energy interchange between the translational and
oscillatory modes od the charged particle dynamics provides mechanism for
charged particle acceleration along the magnetic field lines. This energy
transmutation is an attribute of the chaotic charged particle dynamics in the
combined gravitational and magnetic fields only, the black hole rotation is not
necessary for such charged particle acceleration. The chaotic scatter can cause
transition to the motion along the magnetic field lines with small radius of
the Larmor motion or vanishing Larmor radius, when the speed of the particle
translational motion is largest and can be ultra-relativistic. We discuss
consequences of the model of ionization of test particles forming a neutral
accretion disc, or heavy ions following off-equatorial circular orbits, and we
explore the fate of heavy charged test particles after ionization where no kick
of heavy ions is assumed and only switch-on effect of the magnetic field is
relevant. We demonstrate that acceleration and escape of the ionized particles
can be efficient along the Kerr black hole symmetry axis parallel to the
magnetic field lines. We show that strong acceleration of ionized particles to
ultra-relativistic velocities is preferred in the direction close to the
magnetic field lines. Therefore, the process of ionization of Keplerian discs
around Kerr black holes can serve as a model of relativistic jets.Comment: 21 pages, 13 figure
Charged particle motion around non-singular black holes in conformal gravity in the presence of external magnetic field
We consider electromagnetic fields and charged particle dynamics around
non-singular black holes in conformal gravity immersed in an external,
asymptotically uniform magnetic field. First, we obtain analytic solutions of
the electromagnetic field equation around rotating non-singular black holes in
conformal gravity. We show that the radial components of the electric and
magnetic fields increase with the increase of the parameters and of the
black hole solution. Second, we study the dynamics of charged particles. We
show that the increase of the values of the parameters and and of
magnetic field causes a decrease in the radius of the innermost stable circular
orbits (ISCO) and the magnetic coupling parameter can mimic the effect of
conformal gravity giving the same ISCO radius up to
when .Comment: 17 pages, 18 figures. v2: refereed versio
Scaling Symmetries of Scatterers of Classical Zero-Point Radiation
Classical radiation equilibrium (the blackbody problem) is investigated by
the use of an analogy. Scaling symmetries are noted for systems of classical
charged particles moving in circular orbits in central potentials V(r)=-k/r^n
when the particles are held in uniform circular motion against radiative
collapse by a circularly polarized incident plane wave. Only in the case of a
Coulomb potential n=1 with fixed charge e is there a unique scale-invariant
spectrum of radiation versus frequency (analogous to zero-point radiation)
obtained from the stable scattering arrangement. These results suggest that
non-electromagnetic potentials are not appropriate for discussions of classical
radiation equilibrium.Comment: 13 page
- …
