108,800 research outputs found

    Accumulative Difference Image Protocol for Particle Tracking in Fluorescence Microscopy Tested in Mouse Lymphonodes

    Get PDF
    The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done

    ROBUST TECHNIQUES FOR VISUAL SURVEILLANCE

    Get PDF
    The work described here aims at improving the performance of three building blocks of visual surveillance systems: foreground detection, object tracking and event detection. First, a new background subtraction algorithm is presented for foreground detection. The background model is built with a set of codewords for every pixel. The codeword contains the pixel's principle color and a tangent vector that represents the color variation at that pixel. As the scene illumination changes, a pixel's color is predicted using a linear model of the codeword and the codeword, in turn, is updated using the new observation. We carried out a number of experiments on sequences that have extensive lighting change and compare with previously developed algorithms. Second, we describe a multi-resolution tracking framework developed with efficiency and robustness in mind. Efficiency is achieved by processing low resolution data whenever possible. Robustness results from multiple level coarse-to-fine searching in the tracking state space. We combine sequential filtering both in time and resolution levels int a probabilistic framework. A color blob tracker is implemented and the tracking results are evaluated in a number of experiments. Third, we present a tracking algorithm based on motion analysis of regional affine invariant image features. The tracked object is represented with a probabilistic occupancy map. Using this map as support, regional features are detected and matched across frames. The motion of pixels is then established based on the feature motion. The object occupancy map is in turn updated according to the pixel motion consistency. We describe experiments to measure the sensitivity of our approach to inaccuracy in initialization, and compare it with other approaches. Fourth, we address the problem of visual event recognition in surveillance where noise and missing observations are serious problems. Common sense domain knowledge is exploited to overcome them. The knowledge is represented as first- order logic production rules with associated weights to indicate their confidence. These rules are used in combination with a relaxed deduction algorithm to construct a network of grounded atoms, the Markov Logic Network. The network is used to perform probabilistic inference for input queries about events of interest. The system's performance is demonstrated on a number of videos from a parking lot domain that contains complex interactions of people and vehicles

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction
    • …
    corecore