7,979 research outputs found

    PushPush is NP-hard in 2D

    Get PDF
    We prove that a particular pushing-blocks puzzle is intractable in 2D, improving an earlier result that established intractability in 3D [OS99]. The puzzle, inspired by the game *PushPush*, consists of unit square blocks on an integer lattice. An agent may push blocks (but never pull them) in attempting to move between given start and goal positions. In the PushPush version, the agent can only push one block at a time, and moreover, each block, when pushed, slides the maximal extent of its free range. We prove this version is NP-hard in 2D by reduction from SAT.Comment: 18 pages, 13 figures, 1 table. Improves cs.CG/991101

    PushPush and Push-1 are NP-hard in 2D

    Get PDF
    We prove that two pushing-blocks puzzles are intractable in 2D. One of our constructions improves an earlier result that established intractability in 3D [OS99] for a puzzle inspired by the game PushPush. The second construction answers a question we raised in [DDO00] for a variant we call Push-1. Both puzzles consist of unit square blocks on an integer lattice; all blocks are movable. An agent may push blocks (but never pull them) in attempting to move between given start and goal positions. In the PushPush version, the agent can only push one block at a time, and moreover when a block is pushed it slides the maximal extent of its free range. In the Push-1 version, the agent can only push one block one square at a time, the minimal extent---one square. Both NP-hardness proofs are by reduction from SAT, and rely on a common construction.Comment: 10 pages, 11 figures. Corrects an error in the conference version: Proc. of the 12th Canadian Conference on Computational Geometry, August 2000, pp. 211-21

    Sampling-Based Methods for Factored Task and Motion Planning

    Full text link
    This paper presents a general-purpose formulation of a large class of discrete-time planning problems, with hybrid state and control-spaces, as factored transition systems. Factoring allows state transitions to be described as the intersection of several constraints each affecting a subset of the state and control variables. Robotic manipulation problems with many movable objects involve constraints that only affect several variables at a time and therefore exhibit large amounts of factoring. We develop a theoretical framework for solving factored transition systems with sampling-based algorithms. The framework characterizes conditions on the submanifold in which solutions lie, leading to a characterization of robust feasibility that incorporates dimensionality-reducing constraints. It then connects those conditions to corresponding conditional samplers that can be composed to produce values on this submanifold. We present two domain-independent, probabilistically complete planning algorithms that take, as input, a set of conditional samplers. We demonstrate the empirical efficiency of these algorithms on a set of challenging task and motion planning problems involving picking, placing, and pushing
    • …
    corecore