133,487 research outputs found

    Most Complex Non-Returning Regular Languages

    Get PDF
    A regular language LL is non-returning if in the minimal deterministic finite automaton accepting it there are no transitions into the initial state. Eom, Han and Jir\'askov\'a derived upper bounds on the state complexity of boolean operations and Kleene star, and proved that these bounds are tight using two different binary witnesses. They derived upper bounds for concatenation and reversal using three different ternary witnesses. These five witnesses use a total of six different transformations. We show that for each n4n\ge 4 there exists a ternary witness of state complexity nn that meets the bound for reversal and that at least three letters are needed to meet this bound. Moreover, the restrictions of this witness to binary alphabets meet the bounds for product, star, and boolean operations. We also derive tight upper bounds on the state complexity of binary operations that take arguments with different alphabets. We prove that the maximal syntactic semigroup of a non-returning language has (n1)n(n-1)^n elements and requires at least (n2)\binom{n}{2} generators. We find the maximal state complexities of atoms of non-returning languages. Finally, we show that there exists a most complex non-returning language that meets the bounds for all these complexity measures.Comment: 22 pages, 6 figure

    Nondeterministic State Complexity for Suffix-Free Regular Languages

    Full text link
    We investigate the nondeterministic state complexity of basic operations for suffix-free regular languages. The nondeterministic state complexity of an operation is the number of states that are necessary and sufficient in the worst-case for a minimal nondeterministic finite-state automaton that accepts the language obtained from the operation. We consider basic operations (catenation, union, intersection, Kleene star, reversal and complementation) and establish matching upper and lower bounds for each operation. In the case of complementation the upper and lower bounds differ by an additive constant of two.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    A New Technique for Reachability of States in Concatenation Automata

    Full text link
    We present a new technique for demonstrating the reachability of states in deterministic finite automata representing the concatenation of two languages. Such demonstrations are a necessary step in establishing the state complexity of the concatenation of two languages, and thus in establishing the state complexity of concatenation as an operation. Typically, ad-hoc induction arguments are used to show particular states are reachable in concatenation automata. We prove some results that seem to capture the essence of many of these induction arguments. Using these results, reachability proofs in concatenation automata can often be done more simply and without using induction directly.Comment: 23 pages, 1 table. Added missing affiliation/funding informatio

    Multi-Head Finite Automata: Characterizations, Concepts and Open Problems

    Full text link
    Multi-head finite automata were introduced in (Rabin, 1964) and (Rosenberg, 1966). Since that time, a vast literature on computational and descriptional complexity issues on multi-head finite automata documenting the importance of these devices has been developed. Although multi-head finite automata are a simple concept, their computational behavior can be already very complex and leads to undecidable or even non-semi-decidable problems on these devices such as, for example, emptiness, finiteness, universality, equivalence, etc. These strong negative results trigger the study of subclasses and alternative characterizations of multi-head finite automata for a better understanding of the nature of non-recursive trade-offs and, thus, the borderline between decidable and undecidable problems. In the present paper, we tour a fragment of this literature

    Typologies of agreement: some problems from Kayardild

    Get PDF
    In this paper I describe a number of agreement-type phenomena in the Australian language Kayardild, and assess them against existing definitions, stating both the boundaries of what is to be considered agreement, and characteristics of prototypical agreement phenomena. Though conforming, prima facie, to definitions of agreement that stress semantically based covariance in inflections on different words, the Kayardild phenomena considered here pose a number of challenges to accepted views of agreement: the rich possibilities for stacking case-like agreement inflections emanating from different syntactic levels, the fact that inflections resulting from agreement may change the word class of their host, and the semantic categories involved, in particular tense/aspect/mood, which have been claimed not to be agreement categories on nominals. Two types of inflection, in particular - 'modal case' and 'associating case' - lie somewhere between prototypical agreement and prototypical government. Like agreement, but unlike government, they are triggered by inflectional rather than lexical features of the head, and appear on more than one constituent; like government, but unlike agreement, the semantic categories on head and dependent are not isomorphic. Other types of inflection, though unusual in the categories involved, the possibility of recursion, and their effects on the host's word class, are close to prototypical in terms of how they fare in Corbett's proposed tests for canonical agreement

    Quotient Complexity of Regular Languages

    Full text link
    The past research on the state complexity of operations on regular languages is examined, and a new approach based on an old method (derivatives of regular expressions) is presented. Since state complexity is a property of a language, it is appropriate to define it in formal-language terms as the number of distinct quotients of the language, and to call it "quotient complexity". The problem of finding the quotient complexity of a language f(K,L) is considered, where K and L are regular languages and f is a regular operation, for example, union or concatenation. Since quotients can be represented by derivatives, one can find a formula for the typical quotient of f(K,L) in terms of the quotients of K and L. To obtain an upper bound on the number of quotients of f(K,L) all one has to do is count how many such quotients are possible, and this makes automaton constructions unnecessary. The advantages of this point of view are illustrated by many examples. Moreover, new general observations are presented to help in the estimation of the upper bounds on quotient complexity of regular operations

    Report on Recent Linguistic Fieldwork on Pantar Island, Eastern Indonesia

    Get PDF
    Report to the National Science FoundationThis paper describes linguistic fieldwork on the Nedebang and Western Pantar (Lamma) languages undertaken June-August, 2004 under the auspices of NSF grant #0404884 SGER: Exploratory Fieldwork with the Nedebang Language of Eastern Indonesia. As such it is not intended as a linguistic description of the language s of themselves. See my reports Preliminary Notes on the Nedebang Language and Preliminary Notes on the Western Pantar Language for more information on the languages themselves.National Science Foundation grant #040488

    Invisible pushdown languages

    Full text link
    Context free languages allow one to express data with hierarchical structure, at the cost of losing some of the useful properties of languages recognized by finite automata on words. However, it is possible to restore some of these properties by making the structure of the tree visible, such as is done by visibly pushdown languages, or finite automata on trees. In this paper, we show that the structure given by such approaches remains invisible when it is read by a finite automaton (on word). In particular, we show that separability with a regular language is undecidable for visibly pushdown languages, just as it is undecidable for general context free languages
    corecore