401 research outputs found

    The Topology ToolKit

    Full text link
    This system paper presents the Topology ToolKit (TTK), a software platform designed for topological data analysis in scientific visualization. TTK provides a unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots, Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due to a tight integration with ParaView. It is also easily accessible to developers through a variety of bindings (Python, VTK/C++) for fast prototyping or through direct, dependence-free, C++, to ease integration into pre-existing complex systems. While developing TTK, we faced several algorithmic and software engineering challenges, which we document in this paper. In particular, we present an algorithm for the construction of a discrete gradient that complies to the critical points extracted in the piecewise-linear setting. This algorithm guarantees a combinatorial consistency across the topological abstractions supported by TTK, and importantly, a unified implementation of topological data simplification for multi-scale exploration and analysis. We also present a cached triangulation data structure, that supports time efficient and generic traversals, which self-adjusts its memory usage on demand for input simplicial meshes and which implicitly emulates a triangulation for regular grids with no memory overhead. Finally, we describe an original software architecture, which guarantees memory efficient and direct accesses to TTK features, while still allowing for researchers powerful and easy bindings and extensions. TTK is open source (BSD license) and its code, online documentation and video tutorials are available on TTK's website

    Statistical Inference using the Morse-Smale Complex

    Full text link
    The Morse-Smale complex of a function ff decomposes the sample space into cells where ff is increasing or decreasing. When applied to nonparametric density estimation and regression, it provides a way to represent, visualize, and compare multivariate functions. In this paper, we present some statistical results on estimating Morse-Smale complexes. This allows us to derive new results for two existing methods: mode clustering and Morse-Smale regression. We also develop two new methods based on the Morse-Smale complex: a visualization technique for multivariate functions and a two-sample, multivariate hypothesis test.Comment: 45 pages, 13 figures. Accepted to Electronic Journal of Statistic

    Optimal topological simplification of discrete functions on surfaces

    Get PDF
    We solve the problem of minimizing the number of critical points among all functions on a surface within a prescribed distance {\delta} from a given input function. The result is achieved by establishing a connection between discrete Morse theory and persistent homology. Our method completely removes homological noise with persistence less than 2{\delta}, constructively proving the tightness of a lower bound on the number of critical points given by the stability theorem of persistent homology in dimension two for any input function. We also show that an optimal solution can be computed in linear time after persistence pairs have been computed.Comment: 27 pages, 8 figure

    Morse-Conley-Floer Homology

    Full text link
    For Morse-Smale pairs on a smooth, closed manifold the Morse-Smale-Witten chain complex can be defined. The associated Morse homology is isomorphic to the singular homology of the manifold and yields the classical Morse relations for Morse functions. A similar approach can be used to define homological invariants for isolated invariant sets of flows on a smooth manifold, which gives an analogue of the Conley index and the Morse-Conley relations. The approach will be referred to as Morse-Conley-Floer homology
    • …
    corecore