126 research outputs found

    The Interplay of Semantics and Morphology in Word Embeddings

    Full text link
    We explore the ability of word embeddings to capture both semantic and morphological similarity, as affected by the different types of linguistic properties (surface form, lemma, morphological tag) used to compose the representation of each word. We train several models, where each uses a different subset of these properties to compose its representations. By evaluating the models on semantic and morphological measures, we reveal some useful insights on the relationship between semantics and morphology

    Morphological Priors for Probabilistic Neural Word Embeddings

    Full text link
    Word embeddings allow natural language processing systems to share statistical information across related words. These embeddings are typically based on distributional statistics, making it difficult for them to generalize to rare or unseen words. We propose to improve word embeddings by incorporating morphological information, capturing shared sub-word features. Unlike previous work that constructs word embeddings directly from morphemes, we combine morphological and distributional information in a unified probabilistic framework, in which the word embedding is a latent variable. The morphological information provides a prior distribution on the latent word embeddings, which in turn condition a likelihood function over an observed corpus. This approach yields improvements on intrinsic word similarity evaluations, and also in the downstream task of part-of-speech tagging.Comment: Appeared at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2016, Austin

    One-Shot Neural Cross-Lingual Transfer for Paradigm Completion

    Full text link
    We present a novel cross-lingual transfer method for paradigm completion, the task of mapping a lemma to its inflected forms, using a neural encoder-decoder model, the state of the art for the monolingual task. We use labeled data from a high-resource language to increase performance on a low-resource language. In experiments on 21 language pairs from four different language families, we obtain up to 58% higher accuracy than without transfer and show that even zero-shot and one-shot learning are possible. We further find that the degree of language relatedness strongly influences the ability to transfer morphological knowledge.Comment: Accepted at ACL 201

    A Sub-Character Architecture for Korean Language Processing

    Full text link
    We introduce a novel sub-character architecture that exploits a unique compositional structure of the Korean language. Our method decomposes each character into a small set of primitive phonetic units called jamo letters from which character- and word-level representations are induced. The jamo letters divulge syntactic and semantic information that is difficult to access with conventional character-level units. They greatly alleviate the data sparsity problem, reducing the observation space to 1.6% of the original while increasing accuracy in our experiments. We apply our architecture to dependency parsing and achieve dramatic improvement over strong lexical baselines.Comment: EMNLP 201

    Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization

    Get PDF
    Semantic specialization is the process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with an adversarial loss: the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks: word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data.Comment: Accepted at EMNLP 201
    • …
    corecore