1,758 research outputs found

    Strong edge features for image coding

    Get PDF
    A two-component model is proposed for perceptual image coding. For the first component of the model, the watershed operator is used to detect strong edge features. Then, an efficient morphological interpolation algorithm reconstructs the smooth areas of the image from the extracted edge information, also known as sketch data. The residual component, containing fine textures, is separately coded by a subband coding scheme. The morphological operators involved in the coding of the primary component perform very efficiently compared to conventional techniques like the LGO operator, used for the edge extraction, or the diffusion filters, iteratively applied for the interpolation of smooth areas in previously reported sketch-based coding schemes.Peer ReviewedPostprint (published version

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation
    • …
    corecore