1,625 research outputs found

    A modular description of X0(n)\mathscr{X}_0(n)

    Full text link
    As we explain, when a positive integer nn is not squarefree, even over C\mathbb{C} the moduli stack that parametrizes generalized elliptic curves equipped with an ample cyclic subgroup of order nn does not agree at the cusps with the Γ0(n)\Gamma_0(n)-level modular stack X0(n)\mathscr{X}_0(n) defined by Deligne and Rapoport via normalization. Following a suggestion of Deligne, we present a refined moduli stack of ample cyclic subgroups of order nn that does recover X0(n)\mathscr{X}_0(n) over Z\mathbb{Z} for all nn. The resulting modular description enables us to extend the regularity theorem of Katz and Mazur: X0(n)\mathscr{X}_0(n) is also regular at the cusps. We also prove such regularity for X1(n)\mathscr{X}_1(n) and several other modular stacks, some of which have been treated by Conrad by a different method. For the proofs we introduce a tower of compactifications Ell‾m\overline{Ell}_m of the stack EllEll that parametrizes elliptic curves---the ability to vary mm in the tower permits robust reductions of the analysis of Drinfeld level structures on generalized elliptic curves to elliptic curve cases via congruences.Comment: 67 pages; final version, to appear in Algebra and Number Theor

    Probability Theory of Random Polygons from the Quaternionic Viewpoint

    Full text link
    We build a new probability measure on closed space and plane polygons. The key construction is a map, given by Knutson and Hausmann using the Hopf map on quaternions, from the complex Stiefel manifold of 2-frames in n-space to the space of closed n-gons in 3-space of total length 2. Our probability measure on polygon space is defined by pushing forward Haar measure on the Stiefel manifold by this map. A similar construction yields a probability measure on plane polygons which comes from a real Stiefel manifold. The edgelengths of polygons sampled according to our measures obey beta distributions. This makes our polygon measures different from those usually studied, which have Gaussian or fixed edgelengths. One advantage of our measures is that we can explicitly compute expectations and moments for chordlengths and radii of gyration. Another is that direct sampling according to our measures is fast (linear in the number of edges) and easy to code. Some of our methods will be of independent interest in studying other probability measures on polygon spaces. We define an edge set ensemble (ESE) to be the set of polygons created by rearranging a given set of n edges. A key theorem gives a formula for the average over an ESE of the squared lengths of chords skipping k vertices in terms of k, n, and the edgelengths of the ensemble. This allows one to easily compute expected values of squared chordlengths and radii of gyration for any probability measure on polygon space invariant under rearrangements of edges.Comment: Some small typos fixed, added a calculation for the covariance of edgelengths, added pseudocode for the random polygon sampling algorithm. To appear in Communications on Pure and Applied Mathematics (CPAM
    • …
    corecore