9 research outputs found

    Approximate Distance Oracles for Planar Graphs with Improved Query Time-Space Tradeoff

    Full text link
    We consider approximate distance oracles for edge-weighted n-vertex undirected planar graphs. Given fixed epsilon > 0, we present a (1+epsilon)-approximate distance oracle with O(n(loglog n)^2) space and O((loglog n)^3) query time. This improves the previous best product of query time and space of the oracles of Thorup (FOCS 2001, J. ACM 2004) and Klein (SODA 2002) from O(n log n) to O(n(loglog n)^5).Comment: 20 pages, 9 figures of which 2 illustrate pseudo-code. This is the SODA 2016 version but with the definition of C_i in Phase I fixed and the analysis slightly modified accordingly. The main change is in the subsection bounding query time and stretch for Phase

    Planar Reachability in Linear Space and Constant Time

    Full text link
    We show how to represent a planar digraph in linear space so that distance queries can be answered in constant time. The data structure can be constructed in linear time. This representation of reachability is thus optimal in both time and space, and has optimal construction time. The previous best solution used O(nlogn)O(n\log n) space for constant query time [Thorup FOCS'01].Comment: 20 pages, 5 figures, submitted to FoC

    Fast and Compact Exact Distance Oracle for Planar Graphs

    Full text link
    For a given a graph, a distance oracle is a data structure that answers distance queries between pairs of vertices. We introduce an O(n5/3)O(n^{5/3})-space distance oracle which answers exact distance queries in O(logn)O(\log n) time for nn-vertex planar edge-weighted digraphs. All previous distance oracles for planar graphs with truly subquadratic space i.e., space O(n2ϵ)O(n^{2 - \epsilon}) for some constant ϵ>0\epsilon > 0) either required query time polynomial in nn or could only answer approximate distance queries. Furthermore, we show how to trade-off time and space: for any Sn3/2S \ge n^{3/2}, we show how to obtain an SS-space distance oracle that answers queries in time O((n5/2/S3/2)logn)O((n^{5/2}/ S^{3/2}) \log n). This is a polynomial improvement over the previous planar distance oracles with o(n1/4)o(n^{1/4}) query time

    Shortest Paths in Geometric Intersection Graphs

    Get PDF
    This thesis studies shortest paths in geometric intersection graphs, which can model, among others, ad-hoc communication and transportation networks. First, we consider two classical problems in the field of algorithms, namely Single-Source Shortest Paths (SSSP) and All-Pairs Shortest Paths (APSP). In SSSP we want to compute the shortest paths from one vertex of a graph to all other vertices, while in APSP we aim to find the shortest path between every pair of vertices. Although there is a vast literature for these problems in many graph classes, the case of geometric intersection graphs has been only partially addressed. In unweighted unit-disk graphs, we show that we can solve SSSP in linear time, after presorting the disk centers with respect to their coordinates. Furthermore, we give the first (slightly) subquadratic-time APSP algorithm by using our new SSSP result, bit tricks, and a shifted-grid-based decomposition technique. In unweighted, undirected geometric intersection graphs, we present a simple and general technique that reduces APSP to static, offline intersection detection. Consequently, we give fast APSP algorithms for intersection graphs of arbitrary disks, axis-aligned line segments, arbitrary line segments, d-dimensional axis-aligned boxes, and d-dimensional axis-aligned unit hypercubes. We also provide a near-linear-time SSSP algorithm for intersection graphs of axis-aligned line segments by a reduction to dynamic orthogonal point location. Then, we study two problems that have received considerable attention lately. The first is that of computing the diameter of a graph, i.e., the longest shortest-path distance between any two vertices. In the second, we want to preprocess a graph into a data structure, called distance oracle, such that the shortest path (or its length) between any two query vertices can be found quickly. Since these problems are often too costly to solve exactly, we study their approximate versions. Following a long line of research, we employ Voronoi diagrams to compute a (1+epsilon)-approximation of the diameter of an undirected, non-negatively-weighted planar graph in time near linear in the input size and polynomial in 1/epsilon. The previously best solution had exponential dependency on the latter. Using similar techniques, we can also construct the first (1+epsilon)-approximate distance oracles with similar preprocessing time and space and only O(log(1/\epsilon)) query time. In weighted unit-disk graphs, we present the first near-linear-time (1+epsilon)-approximation algorithm for the diameter and for other related problems, such as the radius and the bichromatic closest pair. To do so, we combine techniques from computational geometry and planar graphs, namely well-separated pair decompositions and shortest-path separators. We also show how to extend our approach to obtain O(1)-query-time (1+epsilon)-approximate distance oracles with near linear preprocessing time and space. Then, we apply these oracles, along with additional ideas, to build a data structure for the (1+epsilon)-approximate All-Pairs Bounded-Leg Shortest Paths (apBLSP) problem in truly subcubic time
    corecore