548 research outputs found

    An improved parser for data-oriented lexical-functional analysis

    Full text link
    We present an LFG-DOP parser which uses fragments from LFG-annotated sentences to parse new sentences. Experiments with the Verbmobil and Homecentre corpora show that (1) Viterbi n best search performs about 100 times faster than Monte Carlo search while both achieve the same accuracy; (2) the DOP hypothesis which states that parse accuracy increases with increasing fragment size is confirmed for LFG-DOP; (3) LFG-DOP's relative frequency estimator performs worse than a discounted frequency estimator; and (4) LFG-DOP significantly outperforms Tree-DOP is evaluated on tree structures only.Comment: 8 page

    On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations

    Full text link
    In this paper we describe how MAP inference can be used to sample efficiently from Gibbs distributions. Specifically, we provide means for drawing either approximate or unbiased samples from Gibbs' distributions by introducing low dimensional perturbations and solving the corresponding MAP assignments. Our approach also leads to new ways to derive lower bounds on partition functions. We demonstrate empirically that our method excels in the typical "high signal - high coupling" regime. The setting results in ragged energy landscapes that are challenging for alternative approaches to sampling and/or lower bounds

    Monte Carlo inference and maximization for phrase-based translation

    Get PDF
    Recent advances in statistical machine translation have used beam search for approximate NP-complete inference within probabilistic translation models. We present an alternative approach of sampling from the posterior distribution defined by a translation model. We define a novel Gibbs sampler for sampling translations given a source sentence and show that it effectively explores this posterior distribution. In doing so we overcome the limitations of heuristic beam search and obtain theoretically sound solutions to inference problems such as finding the maximum probability translation and minimum expected risk training and decoding.

    Parsing Inside-Out

    Full text link
    The inside-outside probabilities are typically used for reestimating Probabilistic Context Free Grammars (PCFGs), just as the forward-backward probabilities are typically used for reestimating HMMs. I show several novel uses, including improving parser accuracy by matching parsing algorithms to evaluation criteria; speeding up DOP parsing by 500 times; and 30 times faster PCFG thresholding at a given accuracy level. I also give an elegant, state-of-the-art grammar formalism, which can be used to compute inside-outside probabilities; and a parser description formalism, which makes it easy to derive inside-outside formulas and many others.Comment: Ph.D. Thesis, 257 pages, 40 postscript figure

    Learning Efficient Disambiguation

    Get PDF
    This dissertation analyses the computational properties of current performance-models of natural language parsing, in particular Data Oriented Parsing (DOP), points out some of their major shortcomings and suggests suitable solutions. It provides proofs that various problems of probabilistic disambiguation are NP-Complete under instances of these performance-models, and it argues that none of these models accounts for attractive efficiency properties of human language processing in limited domains, e.g. that frequent inputs are usually processed faster than infrequent ones. The central hypothesis of this dissertation is that these shortcomings can be eliminated by specializing the performance-models to the limited domains. The dissertation addresses "grammar and model specialization" and presents a new framework, the Ambiguity-Reduction Specialization (ARS) framework, that formulates the necessary and sufficient conditions for successful specialization. The framework is instantiated into specialization algorithms and applied to specializing DOP. Novelties of these learning algorithms are 1) they limit the hypotheses-space to include only "safe" models, 2) are expressed as constrained optimization formulae that minimize the entropy of the training tree-bank given the specialized grammar, under the constraint that the size of the specialized model does not exceed a predefined maximum, and 3) they enable integrating the specialized model with the original one in a complementary manner. The dissertation provides experiments with initial implementations and compares the resulting Specialized DOP (SDOP) models to the original DOP models with encouraging results.Comment: 222 page
    • …
    corecore