773 research outputs found

    Solvent-induced micelle formation in a hydrophobic interaction model

    Full text link
    We investigate the aggregation of amphiphilic molecules by adapting the two-state Muller-Lee-Graziano model for water, in which a solvent-induced hydrophobic interaction is included implicitly. We study the formation of various types of micelle as a function of the distribution of hydrophobic regions at the molecular surface. Successive substitution of non-polar surfaces by polar ones demonstrates the influence of hydrophobicity on the upper and lower critical solution temperatures. Aggregates of lipid molecules, described by a refinement of the model in which a hydrophobic tail of variable length interacts with different numbers of water molecules, are stabilized as the length of the tail increases. We demonstrate that the essential features of micelle formation are primarily solvent-induced, and are explained within a model which focuses only on the alteration of water structure in the vicinity of the hydrophobic surface regions of amphiphiles in solution.Comment: 11 pages, 10 figures; some rearrangement of introduction and discussion sections, streamlining of formalism and general compression; to appear in Phys. Rev.

    Cross-linking of micelles by gemini surfactants

    Full text link
    We investigate the effects of gemini surfactants, telechelic chain and lipids on the nature of micelles formed by conventional single-tail surfactants in water by carrying out Monte Carlo simulations. In a mixture of gemini and single-tail surfactants in water we find direct evidence of micelles of predominantly single-tail surfactants some of which are dynamically cross-linked by gemini surfactants when the concentrations of the geminis is only a few mole percent and their spacers are {\it hydrophilic}. In contrast, mixtures of lipids and single-tail surfactants in water form only isolated micelles, each consisting of a mixture of both species, without cross-links.Comment: 27 pages Latex, 14 postscript figures (5 colour ps figures), minor revision in the tex

    Coarse-grained simulation of amphiphilic self-assembly

    Get PDF
    We present a computer simulation study of amphiphilic self assembly performed using a computationally efficient single-site model based on Gay-Berne and Lennard-Jones particles. Molecular dynamics simulations of these systems show that free self-assembly of micellar, bilayer and inverse micelle arrangements can be readily achieved for a single model parameterisation. This self-assembly is predominantly driven by the anisotropy of the amphiphile-solvent interaction, amphiphile-amphiphile interactions being found to be of secondary importance. While amphiphile concentration is the main determinant of phase stability, molecular parameters such as headgroup size and interaction strength also have measurable affects on system properties. </p

    Simulations of a lattice model of two-headed linear amphiphiles: influence of amphiphile asymmetry

    Full text link
    Using a 2D lattice model, we conduct Monte Carlo simulations of micellar aggregation of linear-chain amphiphiles having two solvophilic head groups. In the context of this simple model, we quantify how the amphiphile architecture influences the critical micelle concentration (CMC), with a particular focus on the role of the asymmetry of the amphiphile structure. Accordingly, we study all possible arrangements of the head groups along amphiphile chains of fixed length N=12N=12 and 16 molecular units. This set of idealized amphiphile architectures approximates many cases of symmetric and asymmetric gemini surfactants, double-headed surfactants and boloform surfactants. Consistent with earlier results, we find that the number of spacer units ss separating the heads has a significant influence on the CMC, with the CMC increasing with ss for s<N/2s<N/2. In comparison, the influence of the asymmetry of the chain architecture on the CMC is much weaker, as is also found experimentally.Comment: 30 pages, 17 fgure

    Phase behavior of grafted chain molecules: Influence of head size and chain length

    Full text link
    Constant pressure Monte Carlo simulations of a coarse grained off-lattice model for monolayers of amphiphilic molecules at the air/water interface are presented. Our study focusses on phase transitions within a monolayer rather than on self aggregation. We thus model the molecules as stiff chains of Lennard-Jones spheres with one slightly larger repulsive end bead (head) grafted to a planar surface. Depending on the size of the head, the temperature and the pressure, we find a variety of phases, which differ in tilt order (including tilt direction), and in positional order. In particular, we observe a modulated phase with a striped superstructure. The modulation results from the competition between two length scales, the head size and the tail diameter. As this mechanism is fairly general, it may conceivably also be relevant in experimental monolayers. We argue that the superstructure would be very difficult to detect in a scattering experiment, which perhaps accounts for the fact that it has not been reported so far. Finally the effect of varying the chain length on the phase diagram is discussed. Except at high pressures and temperatures, the phase boundaries in systems with longer chains are shifted to higher temperatures.Comment: To appear in J. Chem. Phy

    Simulations of a lattice model of two-headed linear amphiphiles: influence of amphiphile asymmetry

    Full text link
    Using a 2D lattice model, we conduct Monte Carlo simulations of micellar aggregation of linear-chain amphiphiles having two solvophilic head groups. In the context of this simple model, we quantify how the amphiphile architecture influences the critical micelle concentration (CMC), with a particular focus on the role of the asymmetry of the amphiphile structure. Accordingly, we study all possible arrangements of the head groups along amphiphile chains of fixed length N=12N=12 and 16 molecular units. This set of idealized amphiphile architectures approximates many cases of symmetric and asymmetric gemini surfactants, double-headed surfactants and boloform surfactants. Consistent with earlier results, we find that the number of spacer units ss separating the heads has a significant influence on the CMC, with the CMC increasing with ss for s<N/2s<N/2. In comparison, the influence of the asymmetry of the chain architecture on the CMC is much weaker, as is also found experimentally.Comment: 30 pages, 17 fgure

    Comment on "Spin-1 aggregation model in one dimension"

    Full text link
    M. Girardi and W. Figueiredo have proposed a simple model of aggregation in one dimension to mimic the self-assembly of amphiphiles in aqueous solution [Phys. Rev. E 62, 8344 (2000)]. We point out that interesting results can be obtained if a different set of interactions is considered, instead of their choice (the s=1 Ising model).Comment: Accepted for publication in Phys. Rev.

    Toy amphiphiles on the computer: What can we learn from generic models?

    Full text link
    Generic coarse-grained models are designed such that they are (i) simple and (ii) computationally efficient. They do not aim at representing particular materials, but classes of materials, hence they can offer insight into universal properties of these classes. Here we review generic models for amphiphilic molecules and discuss applications in studies of self-assembling nanostructures and the local structure of bilayer membranes, i.e. their phases and their interactions with nanosized inclusions. Special attention is given to the comparison of simulations with elastic continuum models, which are, in some sense, generic models on a higher coarse-graining level. In many cases, it is possible to bridge quantitatively between generic particle models and continuum models, hence multiscale modeling works on principle. On the other side, generic simulations can help to interpret experiments by providing information that is not accessible otherwise.Comment: Invited feature article, to appear in Macromolecular Rapid Communication

    Coarse-Grained Kinetic Computations for Rare Events: Application to Micelle Formation

    Full text link
    We discuss a coarse-grained approach to the computation of rare events in the context of grand canonical Monte Carlo (GCMC) simulations of self-assembly of surfactant molecules into micelles. The basic assumption is that the {\it computational} system dynamics can be decomposed into two parts -- fast (noise) and slow (reaction coordinates) dynamics, so that the system can be described by an effective, coarse grained Fokker-Planck (FP) equation. While such an assumption may be valid in many circumstances, an explicit form of FP equation is not always available. In our computations we bypass the analytic derivation of such an effective FP equation. The effective free energy gradient and the state-dependent magnitude of the random noise, which are necessary to formulate the effective Fokker-Planck equation, are obtained from ensembles of short bursts of microscopic simulations {\it with judiciously chosen initial conditions}. The reaction coordinate in our micelle formation problem is taken to be the size of a cluster of surfactant molecules. We test the validity of the effective FP description in this system and reconstruct a coarse-grained free energy surface in good agreement with full-scale GCMC simulations. We also show that, for very small clusters, the cluster size seizes to be a good reaction coordinate for a one-dimensional effective description. We discuss possible ways to improve the current model and to take higher-dimensional coarse-grained dynamics into account
    corecore