1,653 research outputs found

    Using Ensemble Monte Carlo Methods to Evaluate Non-Equilibrium Green's Functions

    Full text link
    The use of ensemble Monte Carlo (EMC) methods for the simulation of transport in semiconductor devices has become extensive over the past few decades. This method allows for simulation utilizing particles while addressing the full physics within the device, leaving the computational difficulties to the computer. More recently, the study of quantum mechanical effects within the devices, effects which also strongly affect the carrier transport itself, have become important. While particles have continued to be useful in quantum simulations using Wigner functions, interest in analytical solutions based upon the non-equilibrium Green's functions (NEGF) have become of greater interest in device simulation. While NEGF has been adopted by many commercial semiconductor, there remains considerable computational difficulty in this approach. Here, a particle approach to NEGF is discussed, and preliminary results presented illustrating the computational efficiency that remains with the use of particles. This approach adopts the natural basis functions for use in a high electric field and the preliminary results are obtained for quantum transport in Si at 300 K. This approach appears to offer significant advantages for the use of NEGF.Comment: 12 pages, 8 figure

    Pair-distribution functions of two-temperature two-mass systems: Comparison of MD, HNC, CHNC, QMC and Kohn-Sham calculations for dense hydrogen

    Full text link
    Two-temperature, two-mass quasi-equilibrium plasmas may occur in electron-ion plasmas,nuclear-matter, as well as in electron-hole condensed-matter systems. Dense two-temperature hydrogen plasmas straddle the difficult partially - degenerate regime of electron densities and temperatures which are important in astrophysics, in inertial-confinement fusion research, and other areas of warm dense matter physics. Results from Kohn-Sham calculations and QMC are used to benchmark the procedures used in classical molecular-dynamics simulations, HNC and CHNC methods to derive electron-electron and electron-proton pair - distribution functions. Then, nonequilibrium molecular dynamics for two -temperature, two-mass plasmas are used to obtain the pair distribution. Using these results, the correct HNC and CHNC procedures for the evaluation of pair-distribution functions in two-temperature two-mass two-component charged fluids are established. Results for a mass ratio of 1:5, typical of electron-hole fluids, as well as for compressed hydrogen are presented. PACS Numbers: 52.25.Kn, 52.25Gj, 71.10.-w, 52.27.Gr, 26.30.+kComment: 17 pages, four figure

    Simulation of electronic quantum devices: Failure of semiclassical models

    Get PDF
    To simplify the design and optimization of new-generation nanomaterials and related electronic and optoelectronic quantum devices, energy dissipation versus decoherence phenomena are often simulated via local models based on theWigner-function formalism. Such a local description is, however, intrinsically incompatible with the fully quantum-mechanical (i.e., non-local) nature of the dissipation-free carrier dynamics. While the limitations of such hybrid treatments have already been pointed out in the past in diverse contexts, the spirit of the present work is to provide a more cohesive and critical review. To this aim, we focus on the fundamental link between the Wigner-function picture and the density-matrix formalism. In particular, we show that, starting from well-established density-matrix-based models, the resulting Wigner-function dissipation and/or thermalization dynamics is necessarily non-local. This leads to the conclusion that the use of local Wigner function models borrowed from the semiclassical Boltzmann theory is formally not justified and may produce unreliable results, and that such simplified local treatments should be replaced by fully non-local quantum models derived, e.g., via the density-matrix formalism

    Introduction to Configuration Path Integral Monte Carlo

    Full text link
    In low-temperature high-density plasmas quantum effects of the electrons are becoming increasingly important. This requires the development of new theoretical and computational tools. Quantum Monte Carlo methods are among the most successful approaches to first-principle simulations of many-body quantum systems. In this chapter we present a recently developed method---the configuration path integral Monte Carlo (CPIMC) method for moderately coupled, highly degenerate fermions at finite temperatures. It is based on the second quantization representation of the NN-particle density operator in a basis of (anti-)symmetrized NN-particle states (configurations of occupation numbers) and allows to tread arbitrary pair interactions in a continuous space. We give a detailed description of the method and discuss the application to electrons or, more generally, Coulomb-interacting fermions. As a test case we consider a few quantum particles in a one-dimensional harmonic trap. Depending on the coupling parameter (ratio of the interaction energy to kinetic energy), the method strongly reduces the sign problem as compared to direct path integral Monte Carlo (DPIMC) simulations in the regime of strong degeneracy which is of particular importance for dense matter in laser plasmas or compact stars. In order to provide a self-contained introduction, the chapter includes a short introduction to Metropolis Monte Carlo methods and the second quantization of quantum mechanics.Comment: chapter in book "Introduction to Complex Plasmas: Scientific Challenges and Technological Opportunities", Michael Bonitz, K. Becker, J. Lopez and H. Thomsen (Eds.) Springer Series "Atomic, Optical and Plasma Physics", vol. 82, Springer 2014, pp. 153-194 ISBN: 978-3-319-05436-0 (Print) 978-3-319-05437-7 (Online

    Wigner transport in linear electromagnetic fields

    Full text link
    Applying a Weyl-Stratonovich transform to the evolution equation of the Wigner function in an electromagnetic field yields a multidimensional gauge-invariant equation which is numerically very challenging to solve. In this work, we apply simplifying assumptions for linear electromagnetic fields and the evolution of an electron in a plane (two-dimensional transport), which reduces the complexity and enables to gain first experiences with a gauge-invariant Wigner equation. We present an equation analysis and show that a finite difference approach for solving the high-order derivatives allows for reformulation into a Fredholm integral equation. The resolvent expansion of the latter contains consecutive integrals, which is favorable for Monte Carlo solution approaches. To that end, we present two stochastic (Monte Carlo) algorithms that evaluate averages of generic physical quantities or directly the Wigner function. The algorithms give rise to a quantum particle model, which interprets quantum transport in heuristic terms
    • …
    corecore