2 research outputs found

    Monte Carlo Tree Search for Asymmetric Trees

    Full text link
    We present an extension of Monte Carlo Tree Search (MCTS) that strongly increases its efficiency for trees with asymmetry and/or loops. Asymmetric termination of search trees introduces a type of uncertainty for which the standard upper confidence bound (UCB) formula does not account. Our first algorithm (MCTS-T), which assumes a non-stochastic environment, backs-up tree structure uncertainty and leverages it for exploration in a modified UCB formula. Results show vastly improved efficiency in a well-known asymmetric domain in which MCTS performs arbitrarily bad. Next, we connect the ideas about asymmetric termination to the presence of loops in the tree, where the same state appears multiple times in a single trace. An extension to our algorithm (MCTS-T+), which in addition to non-stochasticity assumes full state observability, further increases search efficiency for domains with loops as well. Benchmark testing on a set of OpenAI Gym and Atari 2600 games indicates that our algorithms always perform better than or at least equivalent to standard MCTS, and could be first-choice tree search algorithms for non-stochastic, fully-observable environments

    A0C: Alpha Zero in Continuous Action Space

    Full text link
    A core novelty of Alpha Zero is the interleaving of tree search and deep learning, which has proven very successful in board games like Chess, Shogi and Go. These games have a discrete action space. However, many real-world reinforcement learning domains have continuous action spaces, for example in robotic control, navigation and self-driving cars. This paper presents the necessary theoretical extensions of Alpha Zero to deal with continuous action space. We also provide some preliminary experiments on the Pendulum swing-up task, empirically showing the feasibility of our approach. Thereby, this work provides a first step towards the application of iterated search and learning in domains with a continuous action space
    corecore