251 research outputs found

    Personalized PageRank on Evolving Graphs with an Incremental Index-Update Scheme

    Full text link
    {\em Personalized PageRank (PPR)} stands as a fundamental proximity measure in graph mining. Since computing an exact SSPPR query answer is prohibitive, most existing solutions turn to approximate queries with guarantees. The state-of-the-art solutions for approximate SSPPR queries are index-based and mainly focus on static graphs, while real-world graphs are usually dynamically changing. However, existing index-update schemes can not achieve a sub-linear update time. Motivated by this, we present an efficient indexing scheme to maintain indexed random walks in expected O(1)O(1) time after each graph update. To reduce the space consumption, we further propose a new sampling scheme to remove the auxiliary data structure for vertices while still supporting O(1)O(1) index update cost on evolving graphs. Extensive experiments show that our update scheme achieves orders of magnitude speed-up on update performance over existing index-based dynamic schemes without sacrificing the query efficiency

    Exact Single-Source SimRank Computation on Large Graphs

    Full text link
    SimRank is a popular measurement for evaluating the node-to-node similarities based on the graph topology. In recent years, single-source and top-kk SimRank queries have received increasing attention due to their applications in web mining, social network analysis, and spam detection. However, a fundamental obstacle in studying SimRank has been the lack of ground truths. The only exact algorithm, Power Method, is computationally infeasible on graphs with more than 10610^6 nodes. Consequently, no existing work has evaluated the actual trade-offs between query time and accuracy on large real-world graphs. In this paper, we present ExactSim, the first algorithm that computes the exact single-source and top-kk SimRank results on large graphs. With high probability, this algorithm produces ground truths with a rigorous theoretical guarantee. We conduct extensive experiments on real-world datasets to demonstrate the efficiency of ExactSim. The results show that ExactSim provides the ground truth for any single-source SimRank query with a precision up to 7 decimal places within a reasonable query time.Comment: ACM SIGMOD 202

    PRSim: Sublinear Time SimRank Computation on Large Power-Law Graphs

    Full text link
    {\it SimRank} is a classic measure of the similarities of nodes in a graph. Given a node uu in graph G=(V,E)G =(V, E), a {\em single-source SimRank query} returns the SimRank similarities s(u,v)s(u, v) between node uu and each node v∈Vv \in V. This type of queries has numerous applications in web search and social networks analysis, such as link prediction, web mining, and spam detection. Existing methods for single-source SimRank queries, however, incur query cost at least linear to the number of nodes nn, which renders them inapplicable for real-time and interactive analysis. { This paper proposes \prsim, an algorithm that exploits the structure of graphs to efficiently answer single-source SimRank queries. \prsim uses an index of size O(m)O(m), where mm is the number of edges in the graph, and guarantees a query time that depends on the {\em reverse PageRank} distribution of the input graph. In particular, we prove that \prsim runs in sub-linear time if the degree distribution of the input graph follows the power-law distribution, a property possessed by many real-world graphs. Based on the theoretical analysis, we show that the empirical query time of all existing SimRank algorithms also depends on the reverse PageRank distribution of the graph.} Finally, we present the first experimental study that evaluates the absolute errors of various SimRank algorithms on large graphs, and we show that \prsim outperforms the state of the art in terms of query time, accuracy, index size, and scalability.Comment: ACM SIGMOD 201

    An Incrementally Expanding Approach for Updating PageRank on Dynamic Graphs

    Full text link
    PageRank is a popular centrality metric that assigns importance to the vertices of a graph based on its neighbors and their score. Efficient parallel algorithms for updating PageRank on dynamic graphs is crucial for various applications, especially as dataset sizes have reached substantial scales. This technical report presents our Dynamic Frontier approach. Given a batch update of edge deletion and insertions, it progressively identifies affected vertices that are likely to change their ranks with minimal overhead. On a server equipped with a 64-core AMD EPYC-7742 processor, our Dynamic Frontier PageRank outperforms Static, Naive-dynamic, and Dynamic Traversal PageRank by 7.8x, 2.9x, and 3.9x respectively - on uniformly random batch updates of size 10^-7 |E| to 10^-3 |E|. In addition, our approach improves performance at an average rate of 1.8x for every doubling of threads.Comment: 11 pages, 14 figures, 1 tabl

    큰 κ·Έλž˜ν”„ μƒμ—μ„œμ˜ κ°œμΈν™”λœ νŽ˜μ΄μ§€ λž­ν¬μ— λŒ€ν•œ λΉ λ₯Έ 계산 기법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·컴퓨터곡학뢀, 2020. 8. 이상ꡬ.Computation of Personalized PageRank (PPR) in graphs is an important function that is widely utilized in myriad application domains such as search, recommendation, and knowledge discovery. Because the computation of PPR is an expensive process, a good number of innovative and efficient algorithms for computing PPR have been developed. However, efficient computation of PPR within very large graphs with over millions of nodes is still an open problem. Moreover, previously proposed algorithms cannot handle updates efficiently, thus, severely limiting their capability of handling dynamic graphs. In this paper, we present a fast converging algorithm that guarantees high and controlled precision. We improve the convergence rate of traditional Power Iteration method by adopting successive over-relaxation, and initial guess revision, a vector reuse strategy. The proposed method vastly improves on the traditional Power Iteration in terms of convergence rate and computation time, while retaining its simplicity and strictness. Since it can reuse the previously computed vectors for refreshing PPR vectors, its update performance is also greatly enhanced. Also, since the algorithm halts as soon as it reaches a given error threshold, we can flexibly control the trade-off between accuracy and time, a feature lacking in both sampling-based approximation methods and fully exact methods. Experiments show that the proposed algorithm is at least 20 times faster than the Power Iteration and outperforms other state-of-the-art algorithms.κ·Έλž˜ν”„ λ‚΄μ—μ„œ κ°œμΈν™”λœ νŽ˜μ΄μ§€λž­ν¬ (P ersonalized P age R ank, PPR λ₯Ό κ³„μ‚°ν•˜λŠ” 것은 검색 , μΆ”μ²œ , μ§€μ‹λ°œκ²¬ λ“± μ—¬λŸ¬ λΆ„μ•Όμ—μ„œ κ΄‘λ²”μœ„ν•˜κ²Œ ν™œμš©λ˜λŠ” μ€‘μš”ν•œ μž‘μ—… 이닀 . κ°œμΈν™”λœ νŽ˜μ΄μ§€λž­ν¬λ₯Ό κ³„μ‚°ν•˜λŠ” 것은 κ³ λΉ„μš©μ˜ 과정이 ν•„μš”ν•˜λ―€λ‘œ , κ°œμΈν™”λœ νŽ˜μ΄μ§€λž­ν¬λ₯Ό κ³„μ‚°ν•˜λŠ” 효율적이고 ν˜μ‹ μ μΈ 방법듀이 λ‹€μˆ˜ κ°œλ°œλ˜μ–΄μ™”λ‹€ . κ·ΈλŸ¬λ‚˜ 수백만 μ΄μƒμ˜ λ…Έλ“œλ₯Ό 가진 λŒ€μš©λŸ‰ κ·Έλž˜ν”„μ— λŒ€ν•œ 효율적인 계산은 μ—¬μ „νžˆ ν•΄κ²°λ˜μ§€ μ•Šμ€ λ¬Έμ œμ΄λ‹€ . 그에 λ”ν•˜μ—¬ , κΈ°μ‘΄ μ œμ‹œλœ μ•Œκ³ λ¦¬λ“¬λ“€μ€ κ·Έλž˜ν”„ 갱신을 효율적으둜 닀루지 λͺ»ν•˜μ—¬ λ™μ μœΌλ‘œ λ³€ν™”ν•˜λŠ” κ·Έλž˜ν”„λ₯Ό λ‹€λ£¨λŠ” 데에 ν•œκ³„μ μ΄ 크닀 . λ³Έ μ—°κ΅¬μ—μ„œλŠ” 높은 정밀도λ₯Ό 보μž₯ν•˜κ³  정밀도λ₯Ό ν†΅μ œ κ°€λŠ₯ν•œ , λΉ λ₯΄κ²Œ μˆ˜λ ΄ν•˜λŠ” κ°œμΈν™”λœ νŽ˜μ΄μ§€λž­ν¬ 계산 μ•Œκ³ λ¦¬λ“¬μ„ μ œμ‹œν•œλ‹€ . 전톡적인 κ±°λ“­μ œκ³±λ²• (Power 에 좕차가속완화법 (Successive Over Relaxation) κ³Ό 초기 μΆ”μΈ‘ κ°’ 보정법 (Initial Guess 을 ν™œμš©ν•œ 벑터 μž¬μ‚¬μš© μ „λž΅μ„ μ μš©ν•˜μ—¬ 수렴 속도λ₯Ό κ°œμ„ ν•˜μ˜€λ‹€ . μ œμ‹œλœ 방법은 κΈ°μ‘΄ κ±°λ“­μ œκ³±λ²•μ˜ μž₯점인 λ‹¨μˆœμ„±κ³Ό 엄밀성을 μœ μ§€ ν•˜λ©΄μ„œ 도 수렴율과 계산속도λ₯Ό 크게 κ°œμ„  ν•œλ‹€ . λ˜ν•œ κ°œμΈν™”λœ νŽ˜μ΄μ§€λž­ν¬ λ²‘ν„°μ˜ 갱신을 μœ„ν•˜μ—¬ 이전에 계산 λ˜μ–΄ μ €μž₯된 벑터λ₯Ό μž¬μ‚¬μš©ν•˜ μ—¬ , κ°±μ‹  에 λ“œλŠ” μ‹œκ°„μ΄ 크게 λ‹¨μΆ•λœλ‹€ . λ³Έ 방법은 주어진 였차 ν•œκ³„μ— λ„λ‹¬ν•˜λŠ” μ¦‰μ‹œ 결과값을 μ‚°μΆœν•˜λ―€λ‘œ 정확도와 κ³„μ‚°μ‹œκ°„μ„ μœ μ—°ν•˜κ²Œ μ‘°μ ˆν•  수 있으며 μ΄λŠ” ν‘œλ³Έ 기반 μΆ”μ •λ°©λ²•μ΄λ‚˜ μ •ν™•ν•œ 값을 μ‚°μΆœν•˜λŠ” μ—­ν–‰λ ¬ 기반 방법 이 가지지 λͺ»ν•œ νŠΉμ„±μ΄λ‹€ . μ‹€ν—˜ κ²°κ³Ό , λ³Έ 방법은 κ±°λ“­μ œκ³±λ²•μ— λΉ„ν•˜μ—¬ 20 λ°° 이상 λΉ λ₯΄κ²Œ μˆ˜λ ΄ν•œλ‹€λŠ” 것이 ν™•μΈλ˜μ—ˆμœΌλ©° , κΈ° μ œμ‹œλœ 졜고 μ„±λŠ₯ 의 μ•Œκ³ λ¦¬ 듬 보닀 μš°μˆ˜ν•œ μ„±λŠ₯을 λ³΄μ΄λŠ” 것 λ˜ν•œ ν™•μΈλ˜μ—ˆλ‹€1 Introduction 1 2 Preliminaries: Personalized PageRank 4 2.1 Random Walk, PageRank, and Personalized PageRank. 5 2.1.1 Basics on Random Walk 5 2.1.2 PageRank. 6 2.1.3 Personalized PageRank 8 2.2 Characteristics of Personalized PageRank. 9 2.3 Applications of Personalized PageRank. 12 2.4 Previous Work on Personalized PageRank Computation. 17 2.4.1 Basic Algorithms 17 2.4.2 Enhanced Power Iteration 18 2.4.3 Bookmark Coloring Algorithm. 20 2.4.4 Dynamic Programming 21 2.4.5 Monte-Carlo Sampling. 22 2.4.6 Enhanced Direct Solving 24 2.5 Summary 26 3 Personalized PageRank Computation with Initial Guess Revision 30 3.1 Initial Guess Revision and Relaxation 30 3.2 Finding Optimal Weight of Successive Over Relaxation for PPR. 34 3.3 Initial Guess Construction Algorithm for Personalized PageRank. 36 4 Fully Personalized PageRank Algorithm with Initial Guess Revision 42 4.1 FPPR with IGR. 42 4.2 Optimization. 49 4.3 Experiments. 52 5 Personalized PageRank Query Processing with Initial Guess Revision 56 5.1 PPR Query Processing with IGR 56 5.2 Optimization. 64 5.3 Experiments. 67 6 Conclusion 74 Bibliography 77 Appendix 88 Abstract (In Korean) 90Docto

    Fast and Accurate Random Walk with Restart on Dynamic Graphs with Guarantees

    Full text link
    Given a time-evolving graph, how can we track similarity between nodes in a fast and accurate way, with theoretical guarantees on the convergence and the error? Random Walk with Restart (RWR) is a popular measure to estimate the similarity between nodes and has been exploited in numerous applications. Many real-world graphs are dynamic with frequent insertion/deletion of edges; thus, tracking RWR scores on dynamic graphs in an efficient way has aroused much interest among data mining researchers. Recently, dynamic RWR models based on the propagation of scores across a given graph have been proposed, and have succeeded in outperforming previous other approaches to compute RWR dynamically. However, those models fail to guarantee exactness and convergence time for updating RWR in a generalized form. In this paper, we propose OSP, a fast and accurate algorithm for computing dynamic RWR with insertion/deletion of nodes/edges in a directed/undirected graph. When the graph is updated, OSP first calculates offset scores around the modified edges, propagates the offset scores across the updated graph, and then merges them with the current RWR scores to get updated RWR scores. We prove the exactness of OSP and introduce OSP-T, a version of OSP which regulates a trade-off between accuracy and computation time by using error tolerance {\epsilon}. Given restart probability c, OSP-T guarantees to return RWR scores with O ({\epsilon} /c ) error in O (log ({\epsilon}/2)/log(1-c)) iterations. Through extensive experiments, we show that OSP tracks RWR exactly up to 4605x faster than existing static RWR method on dynamic graphs, and OSP-T requires up to 15x less time with 730x lower L1 norm error and 3.3x lower rank error than other state-of-the-art dynamic RWR methods.Comment: 10 pages, 8 figure
    • …
    corecore