2 research outputs found

    Bargaining for Revenue Shares on Tree Trading Networks

    Full text link
    We study trade networks with a tree structure, where a seller with a single indivisible good is connected to buyers, each with some value for the good, via a unique path of intermediaries. Agents in the tree make multiplicative revenue share offers to their parent nodes, who choose the best offer and offer part of it to their parent, and so on; the winning path is determined by who finally makes the highest offer to the seller. In this paper, we investigate how these revenue shares might be set via a natural bargaining process between agents on the tree, specifically, egalitarian bargaining between endpoints of each edge in the tree. We investigate the fixed point of this system of bargaining equations and prove various desirable for this solution concept, including (i) existence, (ii) uniqueness, (iii) efficiency, (iv) membership in the core, (v) strict monotonicity, (vi) polynomial-time computability to any given accuracy. Finally, we present numerical evidence that asynchronous dynamics with randomly ordered updates always converges to the fixed point, indicating that the fixed point shares might arise from decentralized bargaining amongst agents on the trade network.Comment: An extended abstract of this paper appears in Proceedings of IJCAI 201

    Monotonicity in Bargaining Networks (extended abstract)

    No full text
    We study bargaining networks, discussed in a recent paper of Kleinberg and Tardos [KT08], from the perspective of cooperative game theory. In particular we examine three solution concepts, the nucleolus, the core center and the core median. All solution concepts define unique solutions, so they provide testable predictions. We define a new monotonicity property that is a natural axiom of any bargaining game solution, and we prove that all three of them satisfy this monotonicity property. This is actually in contrast to the conventional wisdom for general cooperative games that monotonicity and the core condition (which is a basic property that all three of them satisfy) are incompatible with each other. Our proofs are based on a primal-dual argument (for the nucleolus) and on the FKG inequality (for the core center and the core median). We further observe some qualitative differences between the solution concepts. In particular, there are cases where a strict version of our monotonicity property is a natural axiom, but only the core center and the core median satisfy it. On the other hand, the nucleolus is easy to compute, whereas computing the core center or the core median is #P-hard (yet it can be approximated in polynomial time)
    corecore