1,455 research outputs found

    Expected length of the longest common subsequence for large alphabets

    Full text link
    We consider the length L of the longest common subsequence of two randomly uniformly and independently chosen n character words over a k-ary alphabet. Subadditivity arguments yield that the expected value of L, when normalized by n, converges to a constant C_k. We prove a conjecture of Sankoff and Mainville from the early 80's claiming that C_k\sqrt{k} goes to 2 as k goes to infinity.Comment: 14 pages, 1 figure, LaTe

    Degree of randomness: numerical experiments for astrophysical signals

    Full text link
    Astrophysical and cosmological signals such as the cosmic microwave background radiation, as observed, typically contain contributions of different components, and their statistical properties can be used to distinguish one from the other. A method developed originally by Kolmogorov is involved for the study of astrophysical signals of randomness of various degrees. Numerical performed experiments based on the universality of Kolmogorov distribution and using a single scaling of the ratio of stochastic to regular components, reveal basic features in the behavior of generated signals also in terms of a critical value for that ratio, thus enable the application of this technique for various observational datasetsComment: 6 pages, 9 figures; Europhys.Letters; to match the published versio

    Compressed Spaced Suffix Arrays

    Full text link
    Spaced seeds are important tools for similarity search in bioinformatics, and using several seeds together often significantly improves their performance. With existing approaches, however, for each seed we keep a separate linear-size data structure, either a hash table or a spaced suffix array (SSA). In this paper we show how to compress SSAs relative to normal suffix arrays (SAs) and still support fast random access to them. We first prove a theoretical upper bound on the space needed to store an SSA when we already have the SA. We then present experiments indicating that our approach works even better in practice

    Periodic orbits of the ensemble of Sinai-Arnold cat maps and pseudorandom number generation

    Full text link
    We propose methods for constructing high-quality pseudorandom number generators (RNGs) based on an ensemble of hyperbolic automorphisms of the unit two-dimensional torus (Sinai-Arnold map or cat map) while keeping a part of the information hidden. The single cat map provides the random properties expected from a good RNG and is hence an appropriate building block for an RNG, although unnecessary correlations are always present in practice. We show that introducing hidden variables and introducing rotation in the RNG output, accompanied with the proper initialization, dramatically suppress these correlations. We analyze the mechanisms of the single-cat-map correlations analytically and show how to diminish them. We generalize the Percival-Vivaldi theory in the case of the ensemble of maps, find the period of the proposed RNG analytically, and also analyze its properties. We present efficient practical realizations for the RNGs and check our predictions numerically. We also test our RNGs using the known stringent batteries of statistical tests and find that the statistical properties of our best generators are not worse than those of other best modern generators.Comment: 18 pages, 3 figures, 9 table
    • …
    corecore