5,167 research outputs found

    Waves of maximal height for a class of nonlocal equations with homogeneous symbols

    Get PDF
    We discuss the existence and regularity of periodic traveling-wave solutions of a class of nonlocal equations with homogeneous symbol of order r-r, where r>1r>1. Based on the properties of the nonlocal convolution operator, we apply analytic bifurcation theory and show that a highest, peaked, periodic traveling-wave solution is reached as the limiting case at the end of the main bifurcation curve. The regularity of the highest wave is proved to be exactly Lipschitz. As an application of our analysis, we reformulate the steady reduced Ostrovsky equation in a nonlocal form in terms of a Fourier multiplier operator with symbol m(k)=k2m(k)=k^{-2}. Thereby we recover its unique highest 2π2\pi-periodic, peaked traveling-wave solution, having the property of being exactly Lipschitz at the crest.Comment: 25 page

    One-dimensional fluids with second nearest-neighbor interactions

    Full text link
    As is well known, one-dimensional systems with interactions restricted to first nearest neighbors admit a full analytically exact statistical-mechanical solution. This is essentially due to the fact that the knowledge of the first nearest-neighbor probability distribution function, p1(r)p_1(r), is enough to determine the structural and thermodynamic properties of the system. On the other hand, if the interaction between second nearest-neighbor particles is turned on, the analytically exact solution is lost. Not only the knowledge of p1(r)p_1(r) is not sufficient anymore, but even its determination becomes a complex many-body problem. In this work we systematically explore different approximate solutions for one-dimensional second nearest-neighbor fluid models. We apply those approximations to the square-well and the attractive two-step pair potentials and compare them with Monte Carlo simulations, finding an excellent agreement.Comment: 26 pages, 12 figures; v2: more references adde

    Arnold maps with noise: Differentiability and non-monotonicity of the rotation number

    Full text link
    Arnold's standard circle maps are widely used to study the quasi-periodic route to chaos and other phenomena associated with nonlinear dynamics in the presence of two rationally unrelated periodicities. In particular, the El Nino-Southern Oscillation (ENSO) phenomenon is a crucial component of climate variability on interannual time scales and it is dominated by the seasonal cycle, on the one hand, and an intrinsic oscillatory instability with a period of a few years, on the other. The role of meteorological phenomena on much shorter time scales, such as westerly wind bursts, has also been recognized and modeled as additive noise. We consider herein Arnold maps with additive, uniformly distributed noise. When the map's nonlinear term, scaled by the parameter ϵ\epsilon, is sufficiently small, i.e. ϵ<1\epsilon < 1, the map is known to be a diffeomorphism and the rotation number ρω\rho_{\omega} is a differentiable function of the driving frequency ω\omega. We concentrate on the rotation number's behavior as the nonlinearity becomes large, and show rigorously that ρω\rho _{\omega } is a differentiable function of ω\omega , even for ϵ1\epsilon \geq 1, at every point at which the noise-perturbed map is mixing. We also provide a formula for the derivative of the rotation number. The reasoning relies on linear-response theory and a computer-aided proof. In the diffeomorphism case of ϵ<1\epsilon <1, the rotation number ρω\rho_{\omega } behaves monotonically with respect to ω\omega . We show, using again a computer-aided proof, that this is not the case when ϵ1\epsilon \geq 1 and the map is not a diffeomorphism.Comment: Electronic copy of final peer-reviewed manuscript accepted for publication in the Journal of Statistical Physic
    corecore