886 research outputs found

    Monotone paths in random hypergraphs

    Full text link
    We determine the probability thresholds for the existence of monotone paths, of finite and infinite length, in random oriented graphs with vertex set N[k]\mathbb N^{[k]}, the set of all increasing kk-tuples in N\mathbb N. These graphs appear as line graph of uniform hypergraphs with vertex set N\mathbb N.Comment: 16 page

    Ramsey numbers of ordered graphs

    Full text link
    An ordered graph is a pair G=(G,≺)\mathcal{G}=(G,\prec) where GG is a graph and ≺\prec is a total ordering of its vertices. The ordered Ramsey number R‾(G)\overline{R}(\mathcal{G}) is the minimum number NN such that every ordered complete graph with NN vertices and with edges colored by two colors contains a monochromatic copy of G\mathcal{G}. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings Mn\mathcal{M}_n on nn vertices for which R‾(Mn)\overline{R}(\mathcal{M}_n) is superpolynomial in nn. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number R‾(G)\overline{R}(\mathcal{G}) is polynomial in the number of vertices of G\mathcal{G} if the bandwidth of G\mathcal{G} is constant or if G\mathcal{G} is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by K\'arolyi, Pach, T\'oth, and Valtr.Comment: 29 pages, 13 figures, to appear in Electronic Journal of Combinatoric

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201

    Erdos-Szekeres-type theorems for monotone paths and convex bodies

    Get PDF
    For any sequence of positive integers j_1 < j_2 < ... < j_n, the k-tuples (j_i,j_{i + 1},...,j_{i + k-1}), i=1, 2,..., n - k+1, are said to form a monotone path of length n. Given any integers n\ge k\ge 2 and q\ge 2, what is the smallest integer N with the property that no matter how we color all k-element subsets of [N]=\{1,2,..., N\} with q colors, we can always find a monochromatic monotone path of length n? Denoting this minimum by N_k(q,n), it follows from the seminal 1935 paper of Erd\H os and Szekeres that N_2(q,n)=(n-1)^q+1 and N_3(2,n) = {2n -4\choose n-2} + 1. Determining the other values of these functions appears to be a difficult task. Here we show that 2^{(n/q)^{q-1}} \leq N_3(q,n) \leq 2^{n^{q-1}\log n}, for q \geq 2 and n \geq q+2. Using a stepping-up approach that goes back to Erdos and Hajnal, we prove analogous bounds on N_k(q,n) for larger values of k, which are towers of height k-1 in n^{q-1}. As a geometric application, we prove the following extension of the Happy Ending Theorem. Every family of at least M(n)=2^{n^2 \log n} plane convex bodies in general position, any pair of which share at most two boundary points, has n members in convex position, that is, it has n members such that each of them contributes a point to the boundary of the convex hull of their union.Comment: 32 page

    Metric Construction, Stopping Times and Path Coupling

    Full text link
    In this paper we examine the importance of the choice of metric in path coupling, and the relationship of this to \emph{stopping time analysis}. We give strong evidence that stopping time analysis is no more powerful than standard path coupling. In particular, we prove a stronger theorem for path coupling with stopping times, using a metric which allows us to restrict analysis to standard one-step path coupling. This approach provides insight for the design of non-standard metrics giving improvements in the analysis of specific problems. We give illustrative applications to hypergraph independent sets and SAT instances, hypergraph colourings and colourings of bipartite graphs.Comment: 21 pages, revised version includes statement and proof of general stopping times theorem (section 2.2), and additonal remarks in section
    • …
    corecore