307,042 research outputs found

    Nonequilibrium Critical Dynamics of a Three Species Monomer-Monomer Model

    Full text link
    We study a three species monomer-monomer catalytic surface reaction model with a reactive steady state bordered by three equivalent unreactive phases where the surface is saturated with one species. The transition from the reactive to a saturated phase shows directed percolation critical behavior. Each pair of these reactive-saturated phase boundaries join at a bicritical point where the universal behavior is in the even branching annihilating random walk class. We find the crossover exponent from bicritical to critical behavior and a new exponent associated with the bicritical interface dynamics.Comment: 4 pages RevTex. 4 eps figures included with psfig.sty. Uses multicol.sty. Accepted for publication in PR

    Heat resistant polymers of oxidized styrylphosphine

    Get PDF
    Homopolymers, copolymers and terpolymers of a styrene based monomer are prepared by polymerizing at least one oxidized styrylphosphine monomer or by polymerizing p-diphenylphosphinestyrene and then oxidizing the polymerized monomer with an organoazide. Copolymers can also be prepared by copolymerizing styrene with at least one oxidized styrylphosphine monomer. Flame resistant vinyl based polymers whose degradation products are non toxic and non corrosive are obtained

    The three species monomer-monomer model in the reaction-controlled limit

    Full text link
    We study the one dimensional three species monomer-monomer reaction model in the reaction controlled limit using mean-field theory and dynamic Monte Carlo simulations. The phase diagram consists of a reactive steady state bordered by three equivalent adsorbing phases where the surface is saturated with one monomer species. The transitions from the reactive phase are all continuous, while the transitions between adsorbing phases are first-order. Bicritical points occur where the reactive phase simultaneously meets two adsorbing phases. The transitions from the reactive to an adsorbing phase show directed percolation critical behaviour, while the universal behaviour at the bicritical points is in the even branching annihilating random walk class. The results are contrasted and compared to previous results for the adsorption-controlled limit of the same model.Comment: 12 pages using RevTeX, plus 4 postscript figures. Uses psfig.sty. accepted to Journal of Physics

    Classical dimers on the triangular lattice

    Full text link
    We study the classical hard-core dimer model on the triangular lattice. Following Kasteleyn's fundamental theorem on planar graphs, this problem is soluble by Pfaffians. This model is particularly interesting for, unlike the dimer problems on the bipartite square and hexagonal lattices, its correlations are short ranged with a correlation length of less than one lattice constant. We compute the dimer-dimer and monomer-monomer correlators, and find that the model is deconfining: the monomer-monomer correlator falls off exponentially to a constant value sin(pi/12)/sqrt(3) = .1494..., only slightly below the nearest-neighbor value of 1/6. We also consider the anisotropic triangular lattice model in which the square lattice is perturbed by diagonal bonds of one orientation and small fugacity. We show that the model becomes non-critical immediately and that this perturbation is equivalent to adding a mass term to each of two Majorana fermions that are present in the long wavelength limit of the square-lattice problem.Comment: 15 pages, 5 figures. v2: includes analytic value of monomer-monomer correlator, changes titl

    Equilibrium Properties of A Monomer-Monomer Catalytic Reaction on A One-Dimensional Chain

    Full text link
    We study the equilibrium properties of a lattice-gas model of an A+B0A + B \to 0 catalytic reaction on a one-dimensional chain in contact with a reservoir for the particles. The particles of species AA and BB are in thermal contact with their vapor phases acting as reservoirs, i.e., they may adsorb onto empty lattice sites and may desorb from the lattice. If adsorbed AA and BB particles appear at neighboring lattice sites they instantaneously react and both desorb. For this model of a catalytic reaction in the adsorption-controlled limit, we derive analytically the expression of the pressure and present exact results for the mean densities of particles and for the compressibilities of the adsorbate as function of the chemical potentials of the two species.Comment: 19 pages, 5 figures, submitted to Phys. Rev.

    Compound oxidized styrylphosphine

    Get PDF
    A process is described for preparing flame resistant, nontoxic vinyl polymers which contain phosphazene groups and which do not emit any toxic or corrosive products when they are oxidatively degraded. Homopolymers, copolymers, and terpolymers of a styrene based monomer are prepared by polymerizing at least one oxidized styrylphosphine monomer from a group of organic azides, or by polymerizing p-diphenylphosphinestyrene and then oxidizing that monomer with an organoazide from the group of (C6H5)2P(O)N3, (C6H5O)2P(O)N3, (C6H5)2C3N3(N3), and C6H5C3N3(N3)2. Copolymers can also be prepared by copolymerizing styrene with at least one oxidized styrylphosphine monomer

    Stability of Monomer-Dimer Piles

    Full text link
    We measure how strong, localized contact adhesion between grains affects the maximum static critical angle, theta_c, of a dry sand pile. By mixing dimer grains, each consisting of two spheres that have been rigidly bonded together, with simple spherical monomer grains, we create sandpiles that contain strong localized adhesion between a given particle and at most one of its neighbors. We find that tan(theta_c) increases from 0.45 to 1.1 and the grain packing fraction, Phi, decreases from 0.58 to 0.52 as we increase the relative number fraction of dimer particles in the pile, nu_d, from 0 to 1. We attribute the increase in tan(theta_c(nu_d)) to the enhanced stability of dimers on the surface, which reduces the density of monomers that need to be accomodated in the most stable surface traps. A full characterization and geometrical stability analysis of surface traps provides a good quantitative agreement between experiment and theory over a wide range of nu_d, without any fitting parameters.Comment: 11 pages, 12 figures consisting of 21 eps files, submitted to PR

    Kosterlitz Thouless Universality in Dimer Models

    Full text link
    Using the monomer-dimer representation of strongly coupled U(N) lattice gauge theories with staggered fermions, we study finite temperature chiral phase transitions in (2+1) dimensions. A new cluster algorithm allows us to compute monomer-monomer and dimer-dimer correlations at zero monomer density (chiral limit) accurately on large lattices. This makes it possible to show convincingly, for the first time, that these models undergo a finite temperature phase transition which belongs to the Kosterlitz-Thouless universality class. We find that this universality class is unaffected even in the large N limit. This shows that the mean field analysis often used in this limit breaks down in the critical region.Comment: 4 pages, 4 figure
    corecore