103 research outputs found

    Monolithic Multigrid for Magnetohydrodynamics

    Full text link
    The magnetohydrodynamics (MHD) equations model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. After discretization and linearization, the resulting system of equations is generally difficult to solve due to the coupling between variables, and the heterogeneous coefficients induced by the linearization process. In this paper, we investigate multigrid preconditioners for this system based on specialized relaxation schemes that properly address the system structure and coupling. Three extensions of Vanka relaxation are proposed and applied to problems with up to 170 million degrees of freedom and fluid and magnetic Reynolds numbers up to 400 for stationary problems and up to 20,000 for time-dependent problems

    A monolithic approach for the incompressible magnetohydrodynamics equations

    Get PDF
    A numerical algorithm has been developed to solve the incompressible magnetohydrodynamics (MHD) equations in a fully coupled form. The numerical approach is based on the side centered finite volume approximation where the velocity and magnetic filed vector components are defined at the center of edges/faces, meanwhile the pressure term is defined at the element centroid. In order to enforce a divergence free magnetic field, a magnetic pressure is introduced to the induction equation. The resulting large-scale algebraic linear equations are solved using a one-level restricted additive Schwarz preconditioner with a block-incomplete factorization within each partitioned sub-domains. The parallel implementation of the present fully coupled unstructured MHD solver is based on the PETSc library for improving the effi- ciency of the parallel algorithm. The numerical algorithm is validated for 2D lid-driven cavity flows and backward step problems for both conducting and insulating walls

    An algebraic multigrid method for Q2−Q1Q_2-Q_1 mixed discretizations of the Navier-Stokes equations

    Full text link
    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Specifically, we investigate a Q2−Q1Q_2-Q_1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches leveraging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocity dof relationships of the Q2−Q1Q_2-Q_1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the finest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.Comment: Submitted to a journa

    Discretisations and Preconditioners for Magnetohydrodynamics Models

    Full text link
    The magnetohydrodynamics (MHD) equations are generally known to be difficult to solve numerically, due to their highly nonlinear structure and the strong coupling between the electromagnetic and hydrodynamic variables, especially for high Reynolds and coupling numbers. In the first part of this work, we present a scalable augmented Lagrangian preconditioner for a finite element discretisation of the B\mathbf{B}-E\mathbf{E} formulation of the incompressible viscoresistive MHD equations. For stationary problems, our solver achieves robust performance with respect to the Reynolds and coupling numbers in two dimensions and good results in three dimensions. Our approach relies on specialised parameter-robust multigrid methods for the hydrodynamic and electromagnetic blocks. The scheme ensures exactly divergence-free approximations of both the velocity and the magnetic field up to solver tolerances. In the second part, we focus on incompressible, resistive Hall MHD models and derive structure-preserving finite element methods for these equations. We present a variational formulation of Hall MHD that enforces the magnetic Gauss's law precisely (up to solver tolerances) and prove the well-posedness of a Picard linearisation. For the transient problem, we present time discretisations that preserve the energy and magnetic and hybrid helicity precisely in the ideal limit for two types of boundary conditions. In the third part, we investigate anisothermal MHD models. We start by performing a bifurcation analysis for a magnetic Rayleigh--B\'enard problem at a high coupling number S=1,000S=1{,}000 by choosing the Rayleigh number in the range between 0 and 100,000100{,}000 as the bifurcation parameter. We study the effect of the coupling number on the bifurcation diagram and outline how we create initial guesses to obtain complex solution patterns and disconnected branches for high coupling numbers.Comment: Doctoral thesis, Mathematical Institute, University of Oxford. 174 page

    A local Fourier analysis of additive Vanka relaxation for the Stokes equations

    Full text link
    Multigrid methods are popular solution algorithms for many discretized PDEs, either as standalone iterative solvers or as preconditioners, due to their high efficiency. However, the choice and optimization of multigrid components such as relaxation schemes and grid-transfer operators is crucial to the design of optimally efficient algorithms. It is well--known that local Fourier analysis (LFA) is a useful tool to predict and analyze the performance of these components. In this paper, we develop a local Fourier analysis of monolithic multigrid methods based on additive Vanka relaxation schemes for mixed finite-element discretizations of the Stokes equations. The analysis offers insight into the choice of "patches" for the Vanka relaxation, revealing that smaller patches offer more effective convergence per floating point operation. Parameters that minimize the two-grid convergence factor are proposed and numerical experiments are presented to validate the LFA predictions.Comment: 30 pages, 12 figures. Add new sections: multiplicative Vanka results and sensitivity of convergence factors to mesh distortio

    Exploiting mesh structure to improve multigrid performance for saddle point problems

    Full text link
    In recent years, solvers for finite-element discretizations of linear or linearized saddle-point problems, like the Stokes and Oseen equations, have become well established. There are two main classes of preconditioners for such systems: those based on block-factorization approach and those based on monolithic multigrid. Both classes of preconditioners have several critical choices to be made in their composition, such as the selection of a suitable relaxation scheme for monolithic multigrid. From existing studies, some insight can be gained as to what options are preferable in low-performance computing settings, but there are very few fair comparisons of these approaches in the literature, particularly for modern architectures, such as GPUs. In this paper, we perform a comparison between a block-triangular preconditioner and a monolithic multigrid method with the three most common choices of relaxation scheme - Braess-Sarazin, Vanka, and Schur-Uzawa. We develop a performant Vanka relaxation algorithm for structured-grid discretizations, which takes advantage of memory efficiencies in this setting. We detail the behavior of the various CUDA kernels for the multigrid relaxation schemes and evaluate their individual arithmetic intensity, performance, and runtime. Running a preconditioned FGMRES solver for the Stokes equations with these preconditioners allows us to compare their efficiency in a practical setting. We show monolithic multigrid can outperform block-triangular preconditioning, and that using Vanka or Braess-Sarazin relaxation is most efficient. Even though multigrid with Vanka relaxation exhibits reduced performance on the CPU (up to 100%100\% slower than Braess-Sarazin), it is able to outperform Braess-Sarazin by more than 20%20\% on the GPU, making it a competitive algorithm, especially given the high amount of algorithmic tuning needed for effective Braess-Sarazin relaxation.Comment: submitted to IJHPC

    A Conservative Finite Element Solver for MHD Kinematics equations: Vector Potential method and Constraint Preconditioning

    Full text link
    A new conservative finite element solver for the three-dimensional steady magnetohydrodynamic (MHD) kinematics equations is presented.The solver utilizes magnetic vector potential and current density as solution variables, which are discretized by H(curl)-conforming edge-element and H(div)-conforming face element respectively. As a result, the divergence-free constraints of discrete current density and magnetic induction are both satisfied. Moreover the solutions also preserve the total magnetic helicity. The generated linear algebraic equation is a typical dual saddle-point problem that is ill-conditioned and indefinite. To efficiently solve it, we develop a block preconditioner based on constraint preconditioning framework and devise a preconditioned FGMRES solver. Numerical experiments verify the conservative properties, the convergence rate of the discrete solutions and the robustness of the preconditioner.Comment: 13 pages. arXiv admin note: text overlap with arXiv:1712.0892

    Monolithic multigrid methods for high-order discretizations of time-dependent PDEs

    Get PDF
    A currently growing interest is seen in developing solvers that couple high-fidelity and higher-order spatial discretization schemes with higher-order time stepping methods for various time-dependent fluid plasma models. These problems are famously known to be stiff, thus only implicit time-stepping schemes with certain stability properties can be used. Of the most powerful choices are the implicit Runge-Kutta methods (IRK). However, they are multi-stage, often producing a very large and nonsymmetric system of equations that needs to be solved at each time step. There have been recent efforts on developing efficient and robust solvers for these systems. We have accomplished this by using a Newton-Krylov-multigrid approach that applies a multigrid preconditioner monolithically, preserving the system couplings, and uses Newton’s method for linearization wherever necessary. We show robustness of our solver on the single-fluid magnetohydrodynamic (MHD) model, along with the (Navier-)Stokes and Maxwell’s equations. For all these, we couple IRK with higher-order (mixed) finiteelement (FEM) spatial discretizations. In the Navier-Stokes problem, we further explore achieving more higher-order approximations by using nonconforming mixed FEM spaces with added penalty terms for stability. While in the Maxwell problem, we focus on the rarely used E-B form, where both electric and magnetic fields are differentiated in time, and overcome the difficulty of using FEM on curved domains by using an elasticity solve on each level in the non-nested hierarchy of meshes in the multigrid method
    • …
    corecore