62 research outputs found

    Alternating Hamiltonian cycles in 22-edge-colored multigraphs

    Full text link
    A path (cycle) in a 22-edge-colored multigraph is alternating if no two consecutive edges have the same color. The problem of determining the existence of alternating Hamiltonian paths and cycles in 22-edge-colored multigraphs is an NP\mathcal{NP}-complete problem and it has been studied by several authors. In Bang-Jensen and Gutin's book "Digraphs: Theory, Algorithms and Applications", it is devoted one chapter to survey the last results on this topic. Most results on the existence of alternating Hamiltonian paths and cycles concern on complete and bipartite complete multigraphs and a few ones on multigraphs with high monochromatic degrees or regular monochromatic subgraphs. In this work, we use a different approach imposing local conditions on the multigraphs and it is worthwhile to notice that the class of multigraphs we deal with is much larger than, and includes, complete multigraphs, and we provide a full characterization of this class. Given a 22-edge-colored multigraph GG, we say that GG is 22-M\mathcal{M}-closed (resp. 22-NM\mathcal{NM}-closed)} if for every monochromatic (resp. non-monochromatic) 22-path P=(x1,x2,x3)P=(x_1, x_2, x_3), there exists an edge between x1x_1 and x3x_3. In this work we provide the following characterization: A 22-M\mathcal{M}-closed multigraph has an alternating Hamiltonian cycle if and only if it is color-connected and it has an alternating cycle factor. Furthermore, we construct an infinite family of 22-NM\mathcal{NM}-closed graphs, color-connected, with an alternating cycle factor, and with no alternating Hamiltonian cycle.Comment: 15 pages, 20 figure

    Heroes in oriented complete multipartite graphs

    Full text link
    The dichromatic number of a digraph is the minimum size of a partition of its vertices into acyclic induced subgraphs. Given a class of digraphs C\mathcal C, a digraph HH is a hero in \mc C if HH-free digraphs of C\mathcal C have bounded dichromatic number. In a seminal paper, Berger at al. give a simple characterization of all heroes in tournaments. In this paper, we give a simple proof that heroes in quasi-transitive oriented graphs are the same as heroes in tournaments. We also prove that it is not the case in the class of oriented multipartite graphs, disproving a conjecture of Aboulker, Charbit and Naserasr. We also give a full characterisation of heroes in oriented complete multipartite graphs up to the status of a single tournament on 66 vertices

    Tournament Directed Graphs

    Get PDF
    Paired comparison is the process of comparing objects two at a time. A tournament in Graph Theory is a representation of such paired comparison data. Formally, an n-tournament is an oriented complete graph on n vertices; that is, it is the representation of a paired comparison, where the winner of the comparison between objects x and y (x and y are called vertices) is depicted with an arrow or arc from the winner to the other. In this thesis, we shall prove several results on tournaments. In Chapter 2, we will prove that the maximum number of vertices that can beat exactly m other vertices in an n-tournament is min{2m + 1,2n - 2m - 1}. The remainder of this thesis will deal with tournaments whose arcs have been colored. In Chapter 3 we will define what it means for a k-coloring of a tournament to be k-primitive. We will prove that the maximum k such that some strong n-tournament can be k-colored to be k-primitive lies in the interval [(n-12), (n2) - [n/4]). In Chapter 4, we shall prove special cases of the following 1982 conjecture of Sands, Sauer, and Woodrow from [14]: Let T be a 3-arc-colored tournament containing no 3-cycle C such that each arc in C is a different color. Then T contains a vertex v such that for any other vertex x, x has a monochromatic path to v

    Kernels in edge-coloured orientations of nearly complete graphs

    Get PDF
    AbstractWe call the digraph D an orientation of a graph G if D is obtained from G by the orientation of each edge of G in exactly one of the two possible directions. The digraph D is an m-coloured digraph if the arcs of D are coloured with m-colours.Let D be an m-coloured digraph. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike.A set N⊆V(D) is said to be a kernel by monochromatic paths if it satisfies the two following conditions: (i) for every pair of different vertices u,v∈N there is no monochromatic directed path between them and (ii) for every vertex x∈V(D)-N there is a vertex y∈N such that there is an xy-monochromatic directed path.In this paper we obtain sufficient conditions for an m-coloured orientation of a graph obtained from Kn by deletion of the arcs of K1,r (0⩽r⩽n-1) to have a kernel by monochromatic

    Min (A)cyclic Feedback Vertex Sets and Min Ones Monotone 3-SAT

    Full text link
    In directed graphs, we investigate the problems of finding: 1) a minimum feedback vertex set (also called the Feedback Vertex Set problem, or MFVS), 2) a feedback vertex set inducing an acyclic graph (also called the Vertex 2-Coloring without Monochromatic Cycles problem, or Acyclic FVS) and 3) a minimum feedback vertex set inducing an acyclic graph (Acyclic MFVS). We show that these problems are strongly related to (variants of) Monotone 3-SAT and Monotone NAE 3-SAT, where monotone means that all literals are in positive form. As a consequence, we deduce several NP-completeness results on restricted versions of these problems. In particular, we define the 2-Choice version of an optimization problem to be its restriction where the optimum value is known to be either D or D+1 for some integer D, and the problem is reduced to decide which of D or D+1 is the optimum value. We show that the 2-Choice versions of MFVS, Acyclic MFVS, Min Ones Monotone 3-SAT and Min Ones Monotone NAE 3-SAT are NP-complete. The two latter problems are the variants of Monotone 3-SAT and respectively Monotone NAE 3-SAT requiring that the truth assignment minimize the number of variables set to true. Finally, we propose two classes of directed graphs for which Acyclic FVS is polynomially solvable, namely flow reducible graphs (for which MFVS is already known to be polynomially solvable) and C1P-digraphs (defined by an adjacency matrix with the Consecutive Ones Property)
    • …
    corecore