901,342 research outputs found
Optical Network Virtualisation using Multi-technology Monitoring and SDN-enabled Optical Transceiver
We introduce the real-time multi-technology transport layer monitoring to
facilitate the coordinated virtualisation of optical and Ethernet networks
supported by optical virtualise-able transceivers (V-BVT). A monitoring and
network resource configuration scheme is proposed to include the hardware
monitoring in both Ethernet and Optical layers. The scheme depicts the data and
control interactions among multiple network layers under the software defined
network (SDN) background, as well as the application that analyses the
monitored data obtained from the database. We also present a re-configuration
algorithm to adaptively modify the composition of virtual optical networks
based on two criteria. The proposed monitoring scheme is experimentally
demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration
across both layers in Ethernet switches and V-BVTs
Light Source Monitoring in Quantum Key Distribution with Single Photon Detector at Room Temperature
Photon number resolving monitoring is a practical light source monitoring
scheme in QKD systems, which reduces the impacts from untrusted sources
effectively. This scheme requires a single photon detector, normally working at
low temperature to suppress its dark count rate. In this paper, we use a
room-temperature detector and show that the dark count rate is irrelevant to
the monitoring performance in our scheme, which can sufficiently relax
requirements on the detector's working conditions as well as integration
complexity, and this would be highly demanded for practical systems.
Furthermore, influences of parameter drifts at room temperature are analyzed,
and the monitoring scheme is testified in a real QKD system
All-optical differential current detection technique for unit protection applications
In this paper we demonstrate a novel, all-optical differential current protection scheme. By monitoring the optical power reflected from two matched hybrid fiber Bragg grating current sensors and using a simple optoelectronic threshold detector, an immediate response to an increase in differential current is achieved. A preliminary laboratory embodiment is constructed in order to characterize the performance of the scheme. The proposed technique does not require a complex sensor interrogation scheme, usually characterized by a limited sampling frequency, and thus will be capable of facilitating inexpensive and fast-acting differential protection over long distances
Monitoring system determines amplitude and time of vibration channel peaks
Adaptive scheme advocated in this innovation will reduce processing time and is applicable to environmental testing and to space-borne or aircraft-borne vibration monitoring devices requiring a large number of channels
A control chart procedure for student grade monitoring
This article reports an application of the control chart procedure for monitoring award of grades to
students by the teaching staff in a large university. The chart procedure signals the presence of special
cause variations if any in the award of grades. Implementation of the grade monitoring procedure saved
considerable time and effort while ensuring that the reported special cause situations are justified. The
mathematical derivations for the new control chart scheme are also presented
Intergration of control chart and pattern recognizer for bivariate quality control
Monitoring and diagnosis of mean shifts in manufacturing processes become more challenging when involving two or more correlated variables. Unfortunately, most of the existing multivariate statistical process control schemes are only effective in rapid detection but suffer high false alarm. This is referred to as imbalanced performance monitoring. The problem becomes more complicated when dealing with small mean shift particularly in identifying the causable variables. In this research, a scheme that integrated the control charting and pattern recognition technique has been investigated toward improving the quality control (QC) performance. Design considerations involved extensive simulation experiments to select input representation based on raw data and statistical features, recognizer design structure based on individual and Statistical Features-ANN models, and monitoring-diagnosis approach based on single stage and two stages techniques. The study focuses on correlated process mean shifts for cross correlation function, ρ = 0.1, 0.5, 0.9, and mean shift, μ = ± 0.75 ~ 3.00 standard deviations. Among the investigated design, an Integrated Multivariate Exponentially Weighted Moving Average with Artificial Neural Network scheme provides superior performance, namely the Average Run Length for grand average ARL1 = 7.55 7.78 ( for out-of-control) and ARL0 = 491.03 (small mean shift) and 524.80 (large mean shift) in control process and the grand average for recognition accuracy (RA) = 96.36 98.74. This research has provided a new perspective in realizing balanced monitoring and accurate diagnosis of correlated process mean shifts
Speed Meter As a Quantum Nondemolition Measuring Device for Force
Quantum noise is an important issue for advanced LIGO. Although it is in
principle possible to beat the Standard Quantum Limit (SQL), no practical
recipe has been found yet. This paper dicusses quantum noise in the context of
speedmeter-a devise monitoring the speed of the testmass. The scheme proposed
to overcome SQL in this case might be more practical than the methods based on
monitoring position of the testmass.Comment: 7 pages of RevTex, 1 postscript figur
Detection of Sensor Attack and Resilient State Estimation for Uniformly Observable Nonlinear Systems having Redundant Sensors
This paper presents a detection algorithm for sensor attacks and a resilient
state estimation scheme for a class of uniformly observable nonlinear systems.
An adversary is supposed to corrupt a subset of sensors with the possibly
unbounded signals, while the system has sensor redundancy. We design an
individual high-gain observer for each measurement output so that only the
observable portion of the system state is obtained. Then, a nonlinear error
correcting problem is solved by collecting all the information from those
partial observers and exploiting redundancy. A computationally efficient,
on-line monitoring scheme is presented for attack detection. Based on the
attack detection scheme, an algorithm for resilient state estimation is
provided. The simulation results demonstrate the effectiveness of the proposed
algorithm
- …
