5 research outputs found

    Monitoring Extreme Agricultural Drought over the Horn of Africa (HOA) Using Remote Sensing Measurements

    No full text
    The Horn of Africa ((HOA), including Djibouti, Eritrea, Ethiopia, and Somalia) has been slammed by extreme drought within the past years, and has become one of the most food-insecure regions in the world. Millions of people in the HOA are undernourished and are at risk of famine. Meanwhile, global climate change continues to cause more extreme weather and climate events, such as drought and heat waves, which have significant impacts on crop production and food security. This study aimed to investigate extreme drought in the Horn of Africa region, using satellite remote sensing data products from the Moderate Resolution Imaging Spectroradiometer (MODIS), a key instrument onboard the National Aeronautics and Space Administration (NASA) satellites Terra and Aqua, as well as Tropical Rainfall Measuring Mission (TRMM) precipitation data products. Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), and Vegetation Health Index (VHI) data from 2000 to 2017 were derived from the MODIS measurements and analyzed for assessments of the temporal trend of vegetation health and the impacts of extreme drought events. The results demonstrated the severity of vegetation stress and extreme drought during the past decades. From 1998 to 2017, monthly precipitation over major crop growth seasons decreased significantly. From 2001 to 2017, the mean VHI anomaly of HOA cropland decreased significantly, at a trend of −0.2364 ± 0.1446/year, and the mean TCI anomaly decreased at a trend of −0.2315 ± 0.2009/year. This indicated a deterioration of cropland due to drought conditions in the HOA. During most of the crop growth seasons in 2015 and 2016, the VHI values were below the 10-year (2001–2010) average: This was caused by extreme drought during the 2015–2016 El Niño event, one of the strongest El Niño events in recorded history. In addition, monthly VHI anomalies demonstrated a high correlation with monthly rainfall anomalies in July and August (the growth season of major crops in the HOA), and the trough points of the monthly rainfall and VHI anomaly time series of July and August were consistent with the timing of drought events and El Niño events

    Assessment of vulnerability of cattle farming to climate variability and change in South Africa.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Pietermaritzburg.Livestock are dependent upon weather for their comfort and food supplies. Sometimes, adverse weather conditions can cause production losses, especially if experienced during critical stages of growth. Heat stress is a major cause of production losses in the dairy and beef industries. Heat stress occurs when the temperature of the environment increases above the comfort zone of cattle as a result of solar irradiance. Heat stress decreases grazing and feed intake in cattle, while drought can limit pasture availability for grazing cattle. The temperature-humidity index (THI), a combination of air temperature and relative humidity, was used to determine the influence of heat stress on the productivity of cattle. The aim of the study was to investigate the air temperature and relative humidity conditions over South Africa accountable for high THI values for cattle farming for the period 1985 to 2015. The standard precipitation index (SPI) and normalised difference vegetation index (NDVI) at three months were computed to assess the soil moisture conditions and vegetation greenness for the season with high THI averages. The THI data analysis was performed seasonally, using a 15-year average and daily values from 75 weather stations in South Africa. Monthly rainfall data from 192 weather stations were used to compute SPI at three months. The NDVI used MODIS satellite information to create vegetation images for the three summer months. Results indicated summer as a season when cattle are vulnerable to heat stress. The periods (2005/06, 2007/08, 2012/13, 2013/14) experienced high seasonal averages (THI > 80) compared to the remaining years. Daily THI extremes were prevalent in February in South Africa. The SPI results indicated that the North West, the western Free State and east of the Eastern Cape provinces were vulnerable to dry conditions for the four summer periods. The NDVI results indicated that the eastern and coastal parts of South Africa were areas of high vegetation activity and greenness for all the summers. The Northern Cape, Limpopo, North West and Free State provinces had vegetation that was vulnerable to dry conditions. Heat stress and a healthy vegetation activity were a problem for the Northern Cape and Limpopo provinces, while KwaZulu-Natal and Mpumalanga had heat stress as their only challenge. The northern and eastern parts of South Africa were heat stress areas with air temperature as the main driver in THI. New smaller areas were developing as heat stress zones, and areas that were identified as heat stress zones in the past were increasing in size for South Africa. Natural grazing areas indicated no significant relationship with THI but showed a relationship with SPI. Cattle farmers situated in the heat stressed regions of South Africa and new heat stress developing areas need to take the necessary precautions to make profitable decisions for their cattle production.Author's Keywords: dry conditions,heat stress, NDVI, SPI,THI, vulnerability, wet conditions

    Multispectral remote sensing of the impacts of drought and climate variability on water resources in semi-arid regions of the Western Cape, South Africa

    Get PDF
    >Magister Scientiae - MScThe occurrence of droughts is a threat to global water resources and natural ecosystems, with the impact being more profound in semi-arid environments. The frequency of droughts is likely to increase because of climate change, and this poses a huge threat to the available water resources, to livelihoods and to ecosystems. Routine drought monitoring is fundamental for developing an early warning system and an area-specific drought mitigation and adaptation framework. Surface waterbodies, especially those in arid and semi-arid environments, are vulnerable to the impacts of drought. The development of moderate-resolution sensors, such as the Landsat 8 Operational Land Imager (OLI) and the Sentinel-2 Multispectral Instrument (MSI), allow new opportunities to monitor droughts and their impact on surface waterbodies
    corecore