6,103 research outputs found

    Monitoring breathing via signal strength in wireless networks

    Get PDF
    pre-printThis paper shows experimentally that standard wireless networks which measure received signal strength (RSS) can be used to reliably detect human breathing and estimate the breathing rate, an application we call "BreathTaking". We present analysis showing that, as a first order approximation, breathing induces sinusoidal variation in the measured RSS on a link, with amplitude a function of the relative amplitude and phase of the breathing-affected multipath. We show that although an individual link may not reliably detect breathing, the collective spectral content of a network of devices reliably indicates the presence and rate of breathing. We present a maximum likelihood estimator (MLE) of breathing rate, amplitude, and phase, which uses the RSS data from many links simultaneously. We show experimental results which demonstrate that reliable detection and frequency estimation is possible with 30 seconds of data, within 0.07 to 0.42 breaths per minute (bpm) RMS error in several experiments. The experiments also indicate that the use of directional antennas may improve the systems robustness to external motion

    Wireless communication platform based on an embroidered antenna-sensor for real-time breathing detection

    Get PDF
    Wearable technology has been getting more attention for monitoring vital signs in various medical fields, particularly in breathing monitoring. To monitor respiratory patterns, there is a current set of challenges related to the lack of user comfort, reliability, and rigidity of the systems, as well as challenges related to processing data. Therefore, the need to develop user-friendly and reliable wireless approaches to address these problems is required. In this paper, a novel, full, compact textile breathing sensor is investigated. Specifically, an embroidered meander dipole antenna sensor integrated into an e-textile T-shirt with a Bluetooth transmitter for real-time breathing monitoring was developed and tested. The proposed antenna-based sensor is designed to transmit data over wireless communication networks at 2.4 GHz and is made of a silver-coated nylon thread. The sensing mechanism of the proposed system is based on the detection of a received signal strength indicator (RSSI) transmitted wirelessly by the antenna-based sensor, which is found to be sensitive to stretch. The respiratory system is placed on the middle of the human chest; the area of the proposed system is 4.5 Ă— 0.48 cm2 , with 2.36 Ă— 3.17 cm2 covered by the transmitter module. The respiratory signal is extracted from the variation of the RSSI signal emitted at 2.4 GHz from the detuned embroidered antenna-based sensor embedded into a commercial T-shirt and detected using a laptop. The experimental results demonstrated that breathing signals can be acquired wirelessly by the RSSI via Bluetooth. The RSSI range change was from -80 dBm to -72 dBm, -88 dBm to -79 dBm and -85 dBm to -80 dBm during inspiration and expiration for normal breathing, speaking and movement, respectively. We tested the feasibility assessment for breathing monitoring and we demonstrated experimentally that the standard wireless networks, which measure the RSSI signal via standard Bluetooth protocol, can be used to detect human respiratory status and patterns in real time.This work was supported by the Spanish Government-MICINN under Projects TED2021- 131209B-I00 and PID2021-124288OB-I00.Peer ReviewedPostprint (published version

    Breathfinding: A Wireless Network that Monitors and Locates Breathing in a Home

    Full text link
    This paper explores using RSS measurements on many links in a wireless network to estimate the breathing rate of a person, and the location where the breathing is occurring, in a home, while the person is sitting, laying down, standing, or sleeping. The main challenge in breathing rate estimation is that "motion interference", i.e., movements other than a person's breathing, generally cause larger changes in RSS than inhalation and exhalation. We develop a method to estimate breathing rate despite motion interference, and demonstrate its performance during multiple short (3-7 minute) tests and during a longer 66 minute test. Further, for the same experiments, we show the location of the breathing person can be estimated, to within about 2 m average error in a 56 square meter apartment. Being able to locate a breathing person who is not otherwise moving, without calibration, is important for applications in search and rescue, health care, and security
    • …
    corecore