450 research outputs found

    An efficient approximation to the correlated Nakagami-m sums and its application in equal gain diversity receivers

    Full text link
    There are several cases in wireless communications theory where the statistics of the sum of independent or correlated Nakagami-m random variables (RVs) is necessary to be known. However, a closed-form solution to the distribution of this sum does not exist when the number of constituent RVs exceeds two, even for the special case of Rayleigh fading. In this paper, we present an efficient closed-form approximation for the distribution of the sum of arbitrary correlated Nakagami-m envelopes with identical and integer fading parameters. The distribution becomes exact for maximal correlation, while the tightness of the proposed approximation is validated statistically by using the Chi-square and the Kolmogorov-Smirnov goodness-of-fit tests. As an application, the approximation is used to study the performance of equal-gain combining (EGC) systems operating over arbitrary correlated Nakagami-m fading channels, by utilizing the available analytical results for the error-rate performance of an equivalent maximal-ratio combining (MRC) system

    An Accurate Approximation to the Distribution of the Sum of Equally Correlated Nakagami-m Envelopes and its Application in Equal Gain Diversity Receivers

    Full text link
    We present a novel and accurate approximation for the distribution of the sum of equally correlated Nakagami-m variates. Ascertaining on this result we study the performance of Equal Gain Combining (EGC) receivers, operating over equally correlating fading channels. Numerical results and simulations show the accuracy of the proposed approximation and the validity of the mathematical analysis

    Dual-hop transmissions with fixed-gain relays over Generalized-Gamma fading channels

    Get PDF
    In this paper, a study on the end-to-end performance of dual-hop wireless communication systems equipped with fixed-gain relays and operating over Generalized-Gamma (GG) fading channels is presented. A novel closed form expression for the moments of the end-to-end signal-to-noise ratio (SNR) is derived. The average bit error probability for coherent and non-coherent modulation schemes as well as the end-to-end outage probability of the considered system are also studied. Extensive numerically evaluated and computer simulations results are presented that verify the accuracy of the proposed mathematical analysis.\u

    Unified Performance Analysis of Mixed Line of Sight RF-FSO Fixed Gain Dual-Hop Transmission Systems

    Full text link
    In this work, we carry out a unified performance analysis of a dual-hop fixed gain relay system over asymmetric links composed of both radio-frequency (RF) and unified free-space optics (FSO) under the effect of pointing errors. The RF link is modeled by the Nakagami-mm fading channel and the FSO link by the Gamma-Gamma fading channel subject to both types of detection techniques (i.e. heterodyne detection and intensity modulation with direct detection (IM/DD)). In particular, we derive new unified closed-form expressions for the cumulative distribution function, the probability density function, the moment generation function, and the moments of the end-to-end signal-to-noise ratio of these systems in terms of the Meijer's G function. Based on these formulas, we offer exact closed-form expressions for the outage probability, the higher-order amount of fading, and the average bit-error rate of a variety of binary modulations in terms of the Meijer's G function. Further, an exact closed-form expression for the end-to-end ergodic capacity for the Nakagami-mm-unified FSO relay links is derived in terms of the bivariate G function. All the given results are verified via Computer-based Monte-Carlo simulations

    Performance analysis of mixed Nakagami- m and Gamma–Gamma dual-hop FSO transmission systems

    Get PDF
    In this paper, we carry out a unified performance analysis of a dual-hop relay system over the asymmetric links composed of both radio-frequency (RF) and unified free-space optical (FSO) links under the effect of pointing errors. Both fixed and variable gain relay systems are studied. The RF link is modeled by the Nakagami-m fading channel and the FSO link by the Gamma-Gamma fading channel subject to both types of detection techniques (i.e., heterodyne detection and intensity modulation with direct detection). In particular, we derive new unified closed-form expressions for the cumulative distribution function, the probability density function, the moment generating function (MGF), and the moments of the end-to-end signal-to-noise ratio (SNR) of these systems in terms of the Meijer's G function. Based on these formulas, we offer exact closed-form expressions for the outage probability (OP), the higher order amount of fading, and the average bit error rate (BER) of a variety of binary modulations in terms of the Meijer's G function. Furthermore, an exact closed-form expression of the end-to-end ergodic capacity is derived in terms of the bivariate G function. Additionally, by using the asymptotic expansion of the Meijer's G function at the high-SNR regime, we derive new asymptotic results for the OP, the MGF, and the average BER in terms of simple elementary functions

    Dual-Branch MRC Receivers under Spatial Interference Correlation and Nakagami Fading

    Full text link
    Despite being ubiquitous in practice, the performance of maximal-ratio combining (MRC) in the presence of interference is not well understood. Because the interference received at each antenna originates from the same set of interferers, but partially de-correlates over the fading channel, it possesses a complex correlation structure. This work develops a realistic analytic model that accurately accounts for the interference correlation using stochastic geometry. Modeling interference by a Poisson shot noise process with independent Nakagami fading, we derive the link success probability for dual-branch interference-aware MRC. Using this result, we show that the common assumption that all receive antennas experience equal interference power underestimates the true performance, although this gap rapidly decays with increasing the Nakagami parameter mIm_{\text{I}} of the interfering links. In contrast, ignoring interference correlation leads to a highly optimistic performance estimate for MRC, especially for large mIm_{\text{I}}. In the low outage probability regime, our success probability expression can be considerably simplified. Observations following from the analysis include: (i) for small path loss exponents, MRC and minimum mean square error combining exhibit similar performance, and (ii) the gains of MRC over selection combining are smaller in the interference-limited case than in the well-studied noise-limited case.Comment: to appear in IEEE Transactions on Communication

    Maximum entropy based analysis of a DS/SSMA diversity system

    Get PDF
    D.Ing.This thesis sets out to propose and analyze a cellular Direct Sequence Spread Spectrum Multiple Access (DSjSSMA) system for the Indoor Wireless Communication (IWC) Nakagami fading channel. The up- and downlink of the system implement Differential Phase Shift Keying (DPSK) and Coherent Phase Shift Keying (CPSK) as modulation schemes respectively, and are analyzed using Maximum Entropy (MaxEnt) principles due to its reliability and accuracy. As a means to enhance system capacity and performance, different forms of diversity are investigated; for the up- and downlink, respectively, RAKE reception and Maximum Ratio Combining (MRC) diversity together with Forward Error Control (FEC) coding are assumed. Further, the validity of the Gaussian Assumption (GA) is quantified and investigated under fading and non-fading conditions by calculating the missing information, using Minimum Relative Entropy (MRE) principles between the Inter- User Interference (IUI) distribution and a Gaussian distribution of equal variance
    • …
    corecore