4 research outputs found

    An algebraic analysis of the graph modularity

    Full text link
    One of the most relevant tasks in network analysis is the detection of community structures, or clustering. Most popular techniques for community detection are based on the maximization of a quality function called modularity, which in turn is based upon particular quadratic forms associated to a real symmetric modularity matrix MM, defined in terms of the adjacency matrix and a rank one null model matrix. That matrix could be posed inside the set of relevant matrices involved in graph theory, alongside adjacency, incidence and Laplacian matrices. This is the reason we propose a graph analysis based on the algebraic and spectral properties of such matrix. In particular, we propose a nodal domain theorem for the eigenvectors of MM; we point out several relations occurring between graph's communities and nonnegative eigenvalues of MM; and we derive a Cheeger-type inequality for the graph optimal modularity

    Community detection in networks via nonlinear modularity eigenvectors

    Get PDF
    Revealing a community structure in a network or dataset is a central problem arising in many scientific areas. The modularity function QQ is an established measure quantifying the quality of a community, being identified as a set of nodes having high modularity. In our terminology, a set of nodes with positive modularity is called a \textit{module} and a set that maximizes QQ is thus called \textit{leading module}. Finding a leading module in a network is an important task, however the dimension of real-world problems makes the maximization of QQ unfeasible. This poses the need of approximation techniques which are typically based on a linear relaxation of QQ, induced by the spectrum of the modularity matrix MM. In this work we propose a nonlinear relaxation which is instead based on the spectrum of a nonlinear modularity operator M\mathcal M. We show that extremal eigenvalues of M\mathcal M provide an exact relaxation of the modularity measure QQ, however at the price of being more challenging to be computed than those of MM. Thus we extend the work made on nonlinear Laplacians, by proposing a computational scheme, named \textit{generalized RatioDCA}, to address such extremal eigenvalues. We show monotonic ascent and convergence of the method. We finally apply the new method to several synthetic and real-world data sets, showing both effectiveness of the model and performance of the method
    corecore