3,099 research outputs found

    Waiting times in queueing networks with a single shared server

    Full text link
    We study a queueing network with a single shared server that serves the queues in a cyclic order. External customers arrive at the queues according to independent Poisson processes. After completing service, a customer either leaves the system or is routed to another queue. This model is very generic and finds many applications in computer systems, communication networks, manufacturing systems, and robotics. Special cases of the introduced network include well-known polling models, tandem queues, systems with a waiting room, multi-stage models with parallel queues, and many others. A complicating factor of this model is that the internally rerouted customers do not arrive at the various queues according to a Poisson process, causing standard techniques to find waiting-time distributions to fail. In this paper we develop a new method to obtain exact expressions for the Laplace-Stieltjes transforms of the steady-state waiting-time distributions. This method can be applied to a wide variety of models which lacked an analysis of the waiting-time distribution until now

    A Tandem Fluid Network with L\'evy Input in Heavy Traffic

    Get PDF
    In this paper we study the stationary workload distribution of a fluid tandem queue in heavy traffic. We consider different types of L\'evy input, covering compound Poisson, α\alpha-stable L\'evy motion (with 1<α<21<\alpha<2), and Brownian motion. In our analysis we separately deal with L\'evy input processes with increments that have finite and infinite variance. A distinguishing feature of this paper is that we do not only consider the usual heavy-traffic regime, in which the load at one of the nodes goes to unity, but also a regime in which we simultaneously let the load of both servers tend to one, which, as it turns out, leads to entirely different heavy-traffic asymptotics. Numerical experiments indicate that under specific conditions the resulting simultaneous heavy-traffic approximation significantly outperforms the usual heavy-traffic approximation

    Linear Stochastic Fluid Networks: Rare-Event Simulation and Markov Modulation

    Get PDF
    We consider a linear stochastic fluid network under Markov modulation, with a focus on the probability that the joint storage level attains a value in a rare set at a given point in time. The main objective is to develop efficient importance sampling algorithms with provable performance guarantees. For linear stochastic fluid networks without modulation, we prove that the number of runs needed (so as to obtain an estimate with a given precision) increases polynomially (whereas the probability under consideration decays essentially exponentially); for networks operating in the slow modulation regime, our algorithm is asymptotically efficient. Our techniques are in the tradition of the rare-event simulation procedures that were developed for the sample-mean of i.i.d. one-dimensional light-tailed random variables, and intensively use the idea of exponential twisting. In passing, we also point out how to set up a recursion to evaluate the (transient and stationary) moments of the joint storage level in Markov-modulated linear stochastic fluid networks

    Random matrices, non-colliding processes and queues

    Full text link
    This is survey of some recent results connecting random matrices, non-colliding processes and queues.Comment: To appear in Seminaire de Probabilites XXXV

    Networks of ⋅/G/∞\cdot/G/\infty Server Queues with Shot-Noise-Driven Arrival Intensities

    Get PDF
    We study infinite-server queues in which the arrival process is a Cox process (or doubly stochastic Poisson process), of which the arrival rate is given by shot noise. A shot-noise rate emerges as a natural model, if the arrival rate tends to display sudden increases (or: shots) at random epochs, after which the rate is inclined to revert to lower values. Exponential decay of the shot noise is assumed, so that the queueing systems are amenable for analysis. In particular, we perform transient analysis on the number of customers in the queue jointly with the value of the driving shot-noise process. Additionally, we derive heavy-traffic asymptotics for the number of customers in the system by using a linear scaling of the shot intensity. First we focus on a one dimensional setting in which there is a single infinite-server queue, which we then extend to a network setting

    Separation of timescales in a two-layered network

    Full text link
    We investigate a computer network consisting of two layers occurring in, for example, application servers. The first layer incorporates the arrival of jobs at a network of multi-server nodes, which we model as a many-server Jackson network. At the second layer, active servers at these nodes act now as customers who are served by a common CPU. Our main result shows a separation of time scales in heavy traffic: the main source of randomness occurs at the (aggregate) CPU layer; the interactions between different types of nodes at the other layer is shown to converge to a fixed point at a faster time scale; this also yields a state-space collapse property. Apart from these fundamental insights, we also obtain an explicit approximation for the joint law of the number of jobs in the system, which is provably accurate for heavily loaded systems and performs numerically well for moderately loaded systems. The obtained results for the model under consideration can be applied to thread-pool dimensioning in application servers, while the technique seems applicable to other layered systems too.Comment: 8 pages, 2 figures, 1 table, ITC 24 (2012
    • …
    corecore