6,925 research outputs found

    Large closed queueing networks in semi-Markov environment and its application

    Full text link
    The paper studies closed queueing networks containing a server station and kk client stations. The server station is an infinite server queueing system, and client stations are single-server queueing systems with autonomous service, i.e. every client station serves customers (units) only at random instants generated by a strictly stationary and ergodic sequence of random variables. The total number of units in the network is NN. The expected times between departures in client stations are (Nμj)−1(N\mu_j)^{-1}. After a service completion in the server station, a unit is transmitted to the jjth client station with probability pjp_{j} (j=1,2,...,k)(j=1,2,...,k), and being processed in the jjth client station, the unit returns to the server station. The network is assumed to be in a semi-Markov environment. A semi-Markov environment is defined by a finite or countable infinite Markov chain and by sequences of independent and identically distributed random variables. Then the routing probabilities pjp_{j} (j=1,2,...,k)(j=1,2,...,k) and transmission rates (which are expressed via parameters of the network) depend on a Markov state of the environment. The paper studies the queue-length processes in client stations of this network and is aimed to the analysis of performance measures associated with this network. The questions risen in this paper have immediate relation to quality control of complex telecommunication networks, and the obtained results are expected to lead to the solutions to many practical problems of this area of research.Comment: 35 pages, 1 figure, 12pt, accepted: Acta Appl. Mat

    Non-Equilibrium Statistical Physics of Currents in Queuing Networks

    Get PDF
    We consider a stable open queuing network as a steady non-equilibrium system of interacting particles. The network is completely specified by its underlying graphical structure, type of interaction at each node, and the Markovian transition rates between nodes. For such systems, we ask the question ``What is the most likely way for large currents to accumulate over time in a network ?'', where time is large compared to the system correlation time scale. We identify two interesting regimes. In the first regime, in which the accumulation of currents over time exceeds the expected value by a small to moderate amount (moderate large deviation), we find that the large-deviation distribution of currents is universal (independent of the interaction details), and there is no long-time and averaged over time accumulation of particles (condensation) at any nodes. In the second regime, in which the accumulation of currents over time exceeds the expected value by a large amount (severe large deviation), we find that the large-deviation current distribution is sensitive to interaction details, and there is a long-time accumulation of particles (condensation) at some nodes. The transition between the two regimes can be described as a dynamical second order phase transition. We illustrate these ideas using the simple, yet non-trivial, example of a single node with feedback.Comment: 26 pages, 5 figure

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page

    Approximations for the Moments of Nonstationary and State Dependent Birth-Death Queues

    Full text link
    In this paper we propose a new method for approximating the nonstationary moment dynamics of one dimensional Markovian birth-death processes. By expanding the transition probabilities of the Markov process in terms of Poisson-Charlier polynomials, we are able to estimate any moment of the Markov process even though the system of moment equations may not be closed. Using new weighted discrete Sobolev spaces, we derive explicit error bounds of the transition probabilities and new weak a priori estimates for approximating the moments of the Markov processs using a truncated form of the expansion. Using our error bounds and estimates, we are able to show that our approximations converge to the true stochastic process as we add more terms to the expansion and give explicit bounds on the truncation error. As a result, we are the first paper in the queueing literature to provide error bounds and estimates on the performance of a moment closure approximation. Lastly, we perform several numerical experiments for some important models in the queueing theory literature and show that our expansion techniques are accurate at estimating the moment dynamics of these Markov process with only a few terms of the expansion

    A Large Closed Queueing Network Containing Two Types of Node and Multiple Customer Classes: One Bottleneck Station

    Full text link
    The paper studies a closed queueing network containing two types of node. The first type (server station) is an infinite server queueing system, and the second type (client station) is a single server queueing system with autonomous service, i.e. every client station serves customers (units) only at random instants generated by strictly stationary and ergodic sequence of random variables. It is assumed that there are rr server stations. At the initial time moment all units are distributed in the server stations, and the iith server station contains NiN_i units, i=1,2,...,ri=1,2,...,r, where all the values NiN_i are large numbers of the same order. The total number of client stations is equal to kk. The expected times between departures in the client stations are small values of the order O(N−1)O(N^{-1}) ~ (N=N1+N2+...+Nr)(N=N_1+N_2+...+N_r). After service completion in the iith server station a unit is transmitted to the jjth client station with probability pi,jp_{i,j} ~ (j=1,2,...,kj=1,2,...,k), and being served in the jjth client station the unit returns to the iith server station. Under the assumption that only one of the client stations is a bottleneck node, i.e. the expected number of arrivals per time unit to the node is greater than the expected number of departures from that node, the paper derives the representation for non-stationary queue-length distributions in non-bottleneck client stations.Comment: 39 pages, 5 figure
    • …
    corecore