344 research outputs found

    Small heat-shock proteins: important players in regulating cellular proteostasis

    Get PDF
    Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease.SM was supported by a Royal Society Dorothy Hodgkin Fellowship, HE is supported by an Australian Research Council Future Fellowship (FT110100586) and JC is supported by a National Health and Medical Research Council Project Grant (#1068087)

    Atp11p and Atp12p are chaperones for F1-ATPase biogenesis in mitochondria

    Get PDF
    AbstractThe bioenergetic needs of aerobic cells are met principally through the action of the F1F0 ATP synthase, which catalyzes ATP synthesis during oxidative phosphorylation. The catalytic unit of the enzyme (F1) is a multimeric protein of the subunit composition α3β3γδε. Our work, which employs the yeast Saccharomyces cerevisiae as a model system for studies of mitochondrial function, has provided evidence that assembly of the mitochondrial α and β subunits into the F1 oligomer requires two molecular chaperone proteins called Atp11p and Atp12p. Comprehensive knowledge of Atp11p and Atp12p activities in mitochondria bears relevance to human physiology and disease as these chaperone actions are now known to exist in mitochondria of human cells

    Functional analysis of S.pombe Cdc37

    Get PDF

    Proteomic profiling of Serratia marcescens by high-resolution mass spectrometry

    Get PDF
    Introduction: Serratia marcescens, an opportunistic human pathogen, is reported as an important cause of nosocomial infection and outbreaks. Although the genome of S. marcescens (ATCC 13880) was completely sequenced by 2014, there are no studies on the proteomic profile of the organism. The objective of the present study is to analyze the protein profile of S. marcescens (ATCC 13880) using a high resolution mass spectrometry (MS). Methods: Serratia marcescens ATCC 13880 strain was grown in Luria-Bertani broth and the protein extracted was subjected to trypsin digestion, followed by basic reverse phase liquid chromatography fractionation. The peptide fractions were then analysed using Orbitrap Fusion Mass Spectrometry and the raw MS data were processed in Proteome Discoverer software. Results: The proteomic analysis identified 15 009 unique peptides mapping to 2541 unique protein groups, which corresponds to approximately 54% of the computationally predicted protein-coding genes. Bioinformatic analysis of these identified proteins showed their involvement in biological processes such as cell wall organization, chaperone-mediated protein folding and ATP binding. Pathway analysis revealed that some of these proteins are associated with bacterial chemotaxis and beta-lactam resistance pathway. Conclusion: To the best of our knowledge, this is the first high-throughput proteomics study of S. marcescens (ATCC 13880). These novel observations provide a crucial baseline molecular profile of the S. marcescens proteome which will prove to be helpful for the future research in understanding the host-pathogen interactions during infection, elucidating the mechanism of multidrug resistance, and developing novel diagnostic markers or vaccine for the disease

    Small heat-shock proteins: important players in regulating cellular proteostasis

    Get PDF
    Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease

    Oolemmal proteomics – identification of highly abundant heat shock proteins and molecular chaperones in the mature mouse egg and their localization on the plasma membrane

    Get PDF
    BACKGROUND: The mature mouse egg contains the full complement of maternal proteins required for fertilization, the transition to zygotic transcription, and the beginning stages of embryogenesis. Many of these proteins remain to be characterized, therefore in this study we have identified highly abundant egg proteins using a proteomic approach and found that several of these proteins also appear to localize to the egg surface. Characterization of such molecules will provide important insight into the cellular events of fertilization and early development. METHODS: In order to identify some of the more abundant egg proteins, whole egg extracts were resolved on coomassie-stained two-dimensional (2D) PAGE gels. Several highly abundant protein spots were cored and microsequenced by tandem mass spectrometry (TMS), and determined to be molecular chaperone proteins. Concurrent experiments were performed to identify oolemmal proteins using 2D avidin blotting. Proteins spots that appeared to be surface labeled by biotinylation were correlated with the initial coomassie-stained reference gel. Surprisingly, some of the surface labelled proteins corresponded to those abundant chaperone proteins previously identified. To confirm whether these molecules are accumulating at the oolemmal surface in eggs, we performed immunofluoresence on live, zona-free eggs using antibodies to HSP70, HSP90, GRP94, GRP78, calreticulin and calnexin. RESULTS: The putative surface-labeled proteins identified by biotinylation included the molecular chaperones HSP70 (MW 70 KDa, pI 5.5), HSP90a (MW 85 KDa, pI 4.9), GRP94 (MW 92 KDa, pI 4.7), GRP78 (MW 72 KDa, pI 5.0), Oxygen regulated protein 150 (ORP150; MW 111 KDa, pI 5.1), Calreticulin (MW 48 KDa, pI 4.3), Calnexin (MW 65 KDa, pI 4.5), and Protein disulfide isomerase (PDI; MW 57 KDa, pI 4.8). Immunofluoresence results showed that antibodies to HSP90, GRP94, GRP78 and calreticulin were reactive with oolemmal proteins. We were unable to confirm surface localization of HSP70 or calnexin by this method. CONCLUSIONS: We report here the identification of nine highly abundant molecular chaperones in the mouse egg proteome. In addition, we present preliminary data suggesting that these molecules localize to the oolemma of the mature mouse egg
    • …
    corecore