2,089 research outputs found
Moduli Spaces and Formal Operads
Let overline{M}_{g,n} be the moduli space of stable algebraic curves of genus
g with n marked points. With the operations which relate the different moduli
spaces identifying marked points, the family (overline{M}_{g,n})_{g,n} is a
modular operad of projective smooth Deligne-Mumford stacks, overline{M}. In
this paper we prove that the modular operad of singular chains
C_*(overline{M};Q) is formal; so it is weakly equivalent to the modular operad
of its homology H_*(overline{M};Q). As a consequence, the "up to homotopy"
algebras of these two operads are the same. To obtain this result we prove a
formality theorem for operads analogous to Deligne-Griffiths-Morgan-Sullivan
formality theorem, the existence of minimal models of modular operads, and a
characterization of formality for operads which shows that formality is
independent of the ground field.Comment: 36 pages (v3: some typographical corrections
- …
