2 research outputs found

    Asymmetric Modulation Design for Wireless Information and Power Transfer with Nonlinear Energy Harvesting

    Full text link
    Far-field wireless power transfer (WPT) and simultaneous wireless information and power transfer (SWIPT) have become increasingly important in radio frequency (RF) and communication communities recently. The problem of modulation design for SWIPT has however been scarcely addressed. In this paper, a modulation scheme based on asymmetric phase-shift keying (PSK) is considered, which improves the SWIPT rate-energy tradeoff region significantly. The nonlinear rectifier model, which accurately models the energy harvester, is adopted for evaluating the output direct current (DC) power at the receiver. The harvested DC power is maximized under an average power constraint at the transmitter and a constraint on the rate of information transmitted via a multi-carrier signal over a flat fading channel. As a consequence of the rectifier nonlinearity, this work highlights that asymmetric PSK modulation provides benefits over conventional symmetric PSK modulation in SWIPT and opens the door to systematic modulation design tailored for SWIPT.Comment: Submitted for publication. This version incorporates the conference version "Modulation Design for Wireless Information and Power Transfer with Nonlinear Energy Harvester Modeling" (available as v1

    On Capacity-Achieving Distributions for Complex AWGN Channels Under Nonlinear Power Constraints and their Applications to SWIPT

    Full text link
    The capacity of a complex and discrete-time memoryless additive white Gaussian noise (AWGN) channel under three constraints, namely, input average power, input amplitude and output delivered power is studied. The output delivered power constraint is modelled as the average of linear combination of even moments of the channel input being larger than a threshold. It is shown that the capacity of an AWGN channel under transmit average power and receiver delivered power constraints is the same as the capacity of an AWGN channel under an average power constraint. However, depending on the two constraints, the capacity can be either achieved by a Gaussian distribution or arbitrarily approached by using time-sharing between a Gaussian distribution and On-Off Keying. As an application, a simultaneous wireless information and power transfer (SWIPT) problem is studied, where an experimentally-validated nonlinear model of the harvester is used. It is shown that the delivered power depends on higher order moments of the channel input. Two inner bounds, one based on complex Gaussian inputs and the other based on further restricting the delivered power are obtained for the Rate-Power (RP) region. For Gaussian inputs, the optimal inputs are zero mean and a tradeoff between transmitted information and delivered power is recognized by considering asymmetric power allocations between inphase and quadrature subchannels. Through numerical algorithms, it is observed that input distributions (obtained by restricting the delivered power) attain larger RP region compared to Gaussian input counterparts
    corecore